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Systems
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Abstract

Pairwise nonisomorphic directed and hybrid triple systems can be gener-
ated by, respectively, directing and ordering twofold triple systems and using
the automorphisms of the twofold triple systems for isomorph rejection. Using
this approach directed triple systems of order up to 10 and hybrid triple sys-
tems of order up to 9 are classified. In particular, it turns out that the number of
nonisomorphic directed triple systems of orders 9 and 10 are 596,893,386 and
3,753,619,614,456, respectively.

1 Introduction
A triple system of order v and index λ is a pair (V,B) where V is a set with v
elements, called points, and B is a collection of 3-element subsets of V , called
blocks, such that every 2-element subset of points occurs in exactly λ blocks. In
this paper, triple systems with λ = 2, called twofold triple systems (TTS for short,
or TTS(v) to indicate the number of points), are utilized. The main focus of the
study, however, is on certain triple systems with ordered blocks.
A transitive triple (a, b, c) is said to contain the ordered pairs (a, b), (a, c), and
(b, c), whereas a cyclic triple 〈a, b, c〉 contains the ordered pairs (a, b), (b, c),
and (c, a). Note that—when expressing a triple as a set of the ordered pairs it
contains—〈a, b, c〉 = 〈b, c, a〉 = 〈c, a, b〉, but no similar relation holds for transi-
tive triples. Any three distinct points can obviously form six different transitive
triples and two different cyclic triples.
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We get three particular types of designs related to triple systems by considering
transitive triples, cyclic triples, or both. A directed triple system of order v and
index λ, DTS(v, λ) for short, is a pair (V,D), where D is a collection of transitive
triples on V , a set of points of size v, so that each ordered pair of distinct points is
contained in exactly λ triples [1, 7]. Directed triple systems are sometimes called
transitive triple systems.
If we modify the definition of directed triple systems and use cyclic triples in-
stead of transitive triples, we get the definition of a Mendelsohn triple system,
MTS(v, λ) [7, 19]. Finally, if both cyclic triples and directed triples are allowed,
we get the definition of a hybrid triple system, HTS(v, λ) [6, 7].
In this paper, we consider classification directed and hybrid triple systems with
λ = 1, and mention Mendelsohn triple systems only occasionally. Whenever
λ = 1, we omit λ from the notations and write DTS(v), MTS(v), and HTS(v). It
is assumed that v ≥ 3.
Some basic results on the designs under consideration are discussed in Section 2.
In Section 3 classification of directed and hybrid triple systems via twofold triple
systems is considered, and the classification results obtained are summarized in
Section 4. Directed triple systems are classified up to order 10 and hybrid triple
systems up to order 9. Finally, in Section 5, a clique approach is used to study
orientability of twofold triple systems of order at most 10.

2 Preliminaries

By disregarding the ordering of the triples of an HTS(v, λ) (DTS(v, λ),
MTS(v, λ)), one obtains a triple system of order v and index 2λ, called the un-
derlying triple system. In particular, each HTS(v) (DTS(v), MTS(v)) has an
underlying TTS. Several ways of proving the following theorem can be found
in [7]; the result was proved by Colbourn and Colbourn [3] for λ = 2 and by
Colbourn and Harms [5] for any even λ.

Theorem 1. Every triple system with even index is the underlying triple system of
some DTS (and therefore also some HTS).

In particular, every TTS(v) is the underlying triple system of some DTS(v) (and
therefore also some HTS(v)).
Two HTSs (DTSs, MTSs, TTSs) are isomorphic if there exists a bijection be-
tween their point sets that also maps the triples of one system to the triples of
the other (expressing transitive and cyclic triples as sets of the ordered pairs they
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contain). Such a bijection is called an isomorphism. Isomorphisms from an HTS
(DTS, MTS, TTS) onto itself are called automorphisms and form a group.
Converses of transitive and cyclic triples are defined as (a, b, c)R = (c, b, a) and
〈a, b, c〉R = 〈c, b, a〉, respectively. The converse of an HTS (DTS, MTS)—
obtained by taking the converse of all its triples—is also an HTS (DTS, MTS).
Formally, the converse of (V,D) is (V,DR), where DR = {BR : B ∈ D}. An
HTS (DTS, MTS) that is isomorphic to its converse is called self-converse.
Let, respectively, D(v), M(v), H(v), and T (v) denote the number of nonisomor-
phic directed, Mendelsohn, hybrid, and twofold triple systems of order v.

Theorem 2. For v ≡ 0, 1 (mod 3) sufficiently large, the asymptotic growth rate
of D(v), M(v), H(v), and T (v) is exp(v2 ln v

3 (1 + o(1))).

Proof. Phelps and Lindner [26] determined the asymptotic growth rate for D(v),
M(v), and T (v); see also [7].
Since every DTS is an HTS, H(v) ≥ D(v) = exp(v2 ln v

3 (1 + o(1))). As will be
seen in Section 3, a TTS(v) underlies at most 2v(v−1)/2 HTS(v). Hence

H(v) ≤ 2v(v−1)/2 exp(
v2 ln v

3
(1 + o(1)))

= exp(
v2 ln v

3
(1 + o(1)) + ln 2v2/2−v/2)

= exp(
v2 ln v

3
(1 + o(1) +

3 ln 2
2 ln v

− 3 ln 2
2v ln v

))

= exp(
v2 ln v

3
(1 + o(1))).

Note that Theorem 2 gives the asymptotic growth rate in a rather broad form, and
the values of the functions may differ even exponentially.
The previously known and new (in bold) exact values of T (v), D(v), and H(v)
are shown in Table 1, where empty entries indicate open cases. Exact values of
T (v) have been obtained in [22] for v = 6, in [23] for v = 7, in [21] (incorrect,
one missing) and [17] for v = 9, in [4, 14] for v = 10, and in [25] for v = 12. The
values of D(v) for v ≤ 7 have been obtained in [8]. As far as we know, no values
of H(v) have been published earlier (but determining H(v) for v ≤ 4 is very easy,
so at least these values have probably been known).
As for MTSs, the number of inequivalent, rather than nonisomorphic, designs have
been tabulated in the literature, two MTSs being equivalent if they are isomorphic
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v T (v) D(v) H(v)
3 1 1 2
4 1 3 7
6 1 32 560
7 4 2,368 100,204
9 36 596,893,386 546,282,250,538

10 960 3,753,619,614,456
12 242,995,846
13

Table 1: Number of designs

or if one is isomorphic to the converse of the other. The number of inequivalent
MTSs for v = 3, 4, 6, 7, 9, 10, and 12 is, respectively, 1, 1, 0, 3, 18, 143 (the
value 144 from [10], occasionally referenced in the literature, is incorrect), and
4,905,693; these values have been determined in [20] for n ≤ 7, in [17] for n = 9,
and in [9] for n = 10, 12.
There are two general frameworks for classifying designs of the types discussed
here: direct construction or a classification via the twofold triple systems. In this
paper, constructions of the latter type are considered. Since the number of inequiv-
alent (alternatively, nonisomorphic) Mendelsohn triple systems is, for the known
cases, smaller than the number of twofold triple systems, it seems that direct con-
structions should be preferred for those (see, however, the approach in [9]); in a
separate study, an attempt will be made to classify the Mendelsohn triple systems
of order 13.

3 Directing and Ordering Twofold Triple Systems
The idea of classifying designs of the types considered here via twofold triple
systems is not new. For example, Mathon and Rosa [17] classified Mendelsohn
triple systems of order 9 in this manner (but see the comments at the end of the
previous section). The process of turning the blocks of twofold triple systems into
transitive triples, cyclic triples, or both, is called directing, orienting, and ordering,
respectively. From now on, only directed and hybrid triple systems are considered.
Note that each pair of repeated triples of a TTS is unaffected by the directing and
orienting of any other triple and may therefore be considered separately. There
are three possible ways of directing such a pair of triples and one way of ori-
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enting it: {(a, b, c), (c, b, a)}, {(b, a, c), (c, a, b)}, and {(a, c, b), (b, c, a)}; and
{〈a, b, c〉, 〈c, b, a〉}, respectively.

3.1 Finding All DTSs by Directing
Theorem 1 tells that every TTS underlies a DTS. Several algorithms for obtaining
a DTS having a given TTS as its underlying system have been published [12, 13];
see also [7]. However, none of those is useful here since they were designed pri-
marily to find one DTS, not all DTSs, from the given underlying system. Our
classification method relies on finding all ways to direct a given TTS via an in-
stance of the exact cover problem. The NP-complete decision version of the exact
cover problem is as follows:

Input: A collection of subsets S = {S1, S2, . . . , Sm} of a universal set U .
Question: Is there a subcollection T ⊆ S that forms a partition of U?

It is perhaps somewhat counterintuitive that we employ an algorithm developed for
an NP-complete problem when in fact the fastest known algorithm for finding one
directing is linear in the number of blocks [13]. However, the problem of finding all
solutions of such problem instances is fundamentally different from that of finding
just one solution. The heuristic of the classic backtracking algorithm [11, 16]
for the exact cover problem minimizes the branching factor on each level of the
search tree; this is often a good heuristic for minimizing the size of the search tree
for finding all solutions. It appears though that the types of instances considered
in this study are quite insensitive to the choice of algorithm, with the number of
nodes on each level of the search tree growing steadily.
An instance of the exact cover problem may be constructed as follows. Let the
universal set U consist of the union of all (labeled) blocks of the TTS and all
ordered pairs of distinct points. For each block B = {a, b, c} of the TTS, six
elements of S are now formed (corresponding to the six ways of directing a triple):

{B, (a, b), (a, c), (b, c)},
{B, (c, b), (c, a), (b, a)},
{B, (b, a), (b, c), (a, c)},
{B, (c, a), (c, b), (a, b)},
{B, (a, c), (a, b), (c, b)},
{B, (b, c), (b, a), (c, a)}.

Recall that the repeated triples are considered separately and are therefore ignored
(including the pairs of points they contain) in formulating and solving the exact



CLASSIFICATION OF DIRECTED AND HYBRID TRIPLE SYSTEMS 281

cover instance. The overall algorithm, including the issue of isomorph rejection,
will be postponed until we have discussed the procedure of obtaining hybrid triple
systems by ordering.

3.2 Finding All HTSs by Ordering
Ordering a given TTS to arrive at an HTS is an easy task. Namely, if we view the
TTS as a decomposition of the multigraph 2Kv into triangles, there are exactly
two possibilities for directing any pair of edges with the same endpoints. If we
distinguish between the blocks in a pair of multiple blocks, then the number of
labeled HTSs is then 2v(v−1)/2. However, here we do not distinguish between the
blocks in a pair of multiple blocks; then the number of labeled HTSs is

4r · 2v(v−1)/2−3r = 2v(v−1)/2−r, (1)

where r is the number of pairs of multiple blocks.
Finding all these HTSs is no challenge from a computational point of view, and
just counting the labeled such objects is straightforward. The fact that all labeled
objects are easily counted implies that if we are merely interested in counting the
nonisomorphic HTSs, this can be done by the orbit-stabilizer theorem if the ob-
jects with nontrivial automorphism group can be classified. Let Ni be the number
of nonisomorphic objects with prescribed parameters whose automorphism group
has order i. By the orbit-stabilizer theorem, the total number of labeled objects is

N = v!
∑

i

Ni

i
. (2)

Consequently, it seems feasible to extend the column H(v) of Table 1 along such
an approach.
However, the focus of this study is on classifying objects to get explicit represen-
tatives from each isomorphism class. Isomorph rejection, to be considered next,
plays a central role in any classification.

3.3 Isomorph Rejection
The following obvious result is the cornerstone in detecting isomorphisms between
DTSs (HTSs).

Lemma 3. Assume τ is an isomorphism between two DTSs (HTSs). Then τ is also
an isomorphism between the respective underlying triple systems. In particular, if
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those DTSs (HTSs) have the same labeled underlying triple system, then τ is an
automorphism.

An implication of this lemma is that if we direct (order) two nonisomorphic TTSs,
then we know that the DTSs (HTSs) we get are nonisomorphic. Moreover, since
an isomorphism between two DTSs (HTSs) encountered in the search is an au-
tomorphism of the TTS considered, it suffices to consider elements of the auto-
morphism group of this TTS to detect such isomorphisms. This also implies that
if a TTS has no nontrivial automorphisms, then the DTSs (HTSs) one gets are
necessarily nonisomorphic.
Our isomorph rejection procedure checks whether a DTS (HTS) found is the
smallest (under a prescribed total order of labeled designs) in its orbit under the
automorphism group of the TTS considered; see also [9, p. 249]. If that is the
case, it is accepted. As mentioned earlier, this means that if the automorphism
group of the TTS is trivial, then a DTS (HTS) is always accepted. In performing
this test, we simultaneously get the automorphism group of the DTS (HTS); in
this work we have collected the orders of these groups.
The outlined test can also be used to check whether a DTS (HTS) is self-converse.
Namely, this is the case if and only if its converse is in the orbit of the DTS (HTS)
under the automorphism group of the TTS considered. Note that if a TTS consists
only of pairs of repeated blocks, then any DTS (HTS) found is self-converse.
For the parameters considered in this work, v ≤ 10, there are very few nonisomor-
phic TTS, and determining the automorphism groups of these is rather straight-
forward, for example, using the program nauty [18]. Algorithms for handling
permutation groups can be found in [2].

3.4 Overall Algorithm and Validation

We now need to put together the three subtasks specified so far: directing (order-
ing) of repeated blocks, directing (ordering) of blocks that are not repeated, and
isomorph rejection.
Note that an automorphism always maps repeated blocks among themselves and
the same holds for blocks that are not repeated. Based on this observation, the
following approach may be taken. For a given TTS, find all possible directings
(orderings) of the blocks that are not repeated. For each directing (ordering) found,
carry out isomorph rejection as outlined in the previous subsection. If the partial
design is accepted, direct (order) the repeated blocks, and carry out isomorph re-
jection for those. Observe that in the final step only automorphisms of the partial
design are considered in the isomorph rejection procedure.
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In any computer-aided classification, the validity and reliability of the results should
be addressed. Here a double-counting technique utilizing the orbit-stabilizer theo-
rem (2) is employed. Analogous techniques have earlier been used, for example,
in [15].
Let D denote the set of all nonisomorphic DTS(v). By the orbit-stabilizer theo-
rem, the total number of labeled DTS(v) is

v!
∑
D∈D

1
Aut(D)

. (3)

Similarly, the total number of labeled DTS(v) may also be calculated as

v!
∑
B∈T

L(B)
Aut(B)

, (4)

where B is the set of nonisomorphic TTS(v) and L(B) is the total number of
labeled DTSs having B as the underlying triple system. Data for (3) is obtained
from the accepted DTSs, whereas data for (4) comes from all directings encoun-
tered during the search. Note that some care must be taken to get the correct values
for (4) if the outlined two-step method is used, where partial directings may be re-
jected.
One drawback of double-counting directings in the described manner is that in
directing a TTS with a trivial automorphism group, a loss of a DTS will be left
unnoticed. With this technique, there is a trade-off between time and quality: if an
object occurs many times during the search, this is good for validation but bad for
the overall computation time.
The formulas for the number of HTSs are analogous to (3) and (4). By (1), how-
ever, (4) reduces to

v!
∑
B∈B

2v(v−1)/2−R(B)

Aut(B)
, (5)

where R(B) is the number of pairs of multiple blocks in B, giving a much higher
level of confidence for the validity check in this case.

4 The Results
In this section, the main results are presented along with some additional com-
ments. The recorded CPU times apply to the actual computer runs carried out us-
ing (initial) algorithms that differ slightly from those outlined in the main text. The
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CPU times should therefore be viewed as indications of the hardness of instances
(or upper bounds on the CPU times needed), rather than measures of optimized
algorithms.

4.1 The Case DTS(9)

The 36 nonisomorphic TTS(9) lead to 596,893,386 pairwise nonisomorphic di-
rected triple systems of order 9, out of which 37,172 are self-converse and 131,643
have a nontrivial automorphism group. The total number of labeled DTS(9) is
216,576,683,027,712.
A list of open problems in [7] begins by asking how many (how few) nonisomor-
phic DTS(v, λ) a given TS(v, 2λ) can underlie. More specifically, and relevantly,
some twofold triple systems underlie exponentially many (with respect to v) DTS,
but does every TTS? The results (of this and other studies) seem to indicate that
the answer is yes.
The minimum and maximum number of nonisomorphic DTSs obtained from a
TTS(9) are 1,263 and 67,826,496, respectively.
Slightly over 7 hours of CPU time of a 1.3-GHz PC was used in this search. Data
regarding the orders of the automorphism groups and the number of self-converse
designs are tabulated in Table 2.

|Aut(D)| number of DTS number of self-converse DTS
1 596,761, 743 36,481
2 130,251 625
3 900 20
4 366 38
5 2 0
6 94 2
8 17 3
10 3 1
16 6 2
20 4 0

Total 596,893,386 37,172

Table 2: Directed triple systems of order 9
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4.2 The Case DTS(10)

The 960 nonisomorphic TTS(10) lead to 3,753,619,614,456 pairwise noniso-
morphic directed triple systems of order 10, of which 664,140 are self-converse
and 84,263 have a nontrivial automorphism group. The total number of labeled
DTS(10) is 13,621,134,683,949,096,960.
The minimum and maximum number of nonisomorphic DTSs obtained from a
TTS(10) are 1,063,665 and 6,527,003,056, respectively.
This classification required almost 16 months of CPU time using mostly 2.2–2.4-
Ghz PCs but also a couple of slower computers. Data regarding the orders of the
automorphism groups and the number of self-converse designs are tabulated in
Table 3.

|Aut(D)| number of DTS number of self-converse DTS
1 3,753,619,530,193 664,057
2 51,186 40
3 32,883 43
5 176 0
6 6 0
7 12 0

Total 3,753,619,614,456 664,140

Table 3: Directed triple systems of order 10

4.3 The Cases HTS(v), v ≤ 9

As far as we know, no classification of hybrid triple systems has earlier been pub-
lished, so we present the classification results for all admissible cases 3 ≤ v ≤ 9.
The results are compiled in Tables 4 through 8.
The HTSs of order 3 can be classified even without a computer. There are two
nonisomorphic systems: one directed system and one Mendelsohn system, both
of which are self-converse and have a nontrivial automorphism group. The total
number of labeled HTS(3) is 4.
The unique TTS(4) leads to 7 nonisomorphic hybrid triple systems of order 4, of
which 5 are self-converse. All except one have a nontrivial automorphism group.
The total number of labeled HTS(4) is 64.
The unique TTS(6) leads to 560 hybrid triple systems of order 6, of which 20 have
a nontrivial automorphism group. The case v = 6 is special in at least two ways:
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none of the HTS(6) is self-converse and no Mendelsohn triple system of order 6
exists. The total number of labeled HTS(6) is 393, 216.

The four nonisomorphic TTS(7) lead to 100,204 nonisomorphic hybrid triple sys-
tems of order 7, of which 1,508 are self-converse and 1, 953 have a nontrivial au-
tomorphism group. The minimum and maximum number of nonisomorphic HTSs
obtained from a TTS(7) are 140 and 50,664, respectively. The total number of
labeled HTS(7) is 499,875,840.

The 36 nonisomorphic TTS(9) lead to 546,282,250,538 pairwise nonisomorphic
hybrid systems of order 9, of which 9,126,074 are self-converse and 4,271,259
have a nontrivial automorphism group. The minimum and maximum number of
nonisomorphic HTSs obtained from a TTS(9) are 39,662 and 68,719,476,736
(=236), respectively. The total number of labeled HTS(9) is 198,234,126,560,
526,336.

Approximately two months of CPU time was used in the classification of HTS(9),
utilizing 1.2–2.4-GHz PCs. Less than one minute of CPU time was enough for
classifying all hybrid systems of smaller orders.

|Aut(D)| number of HTS number of self-converse HTS
2 1 1
6 1 1

Total 2 2

Table 4: Hybrid triple systems of order 3

|Aut(D)| number of HTS number of self-converse HTS
1 1 1
2 1 1
3 1 1
4 3 1
12 1 1

Total 7 5

Table 5: Hybrid triple systems of order 4
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|Aut(D)| number of HTS number of self-converse HTS
1 540 0
3 16 0
5 4 0

Total 560 0

Table 6: Hybrid triple systems of order 6

|Aut(D)| number of HTS number of self-converse HTS
1 98,251 1,247
2 1,759 185
3 102 10
4 42 42
6 29 7
7 1 1
8 11 11
14 2 0
24 4 4
42 2 0
168 1 1

Total 100,204 1,508

Table 7: Hybrid triple systems of order 7
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|Aut(D)| number of HTS number of self-converse HTS
1 546,277,979,279 9,094,777
2 4,248,194 28,964
3 19,244 1,610
4 2,974 546
5 240 0
6 428 106
8 82 22
9 9 1
10 28 4
12 31 31
16 14 6
18 3 3
20 8 0
36 1 1
48 1 1
54 1 1

432 1 1
Total 546,282,250,538 9,126,074

Table 8: Hybrid triple systems of order 9
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5 Orientability of Twofold Triple Systems

By Theorem 1, every TTS can be directed. However, not every TTS can be
oriented—see the classification results listed in Section 2. For TTSs that cannot
be oriented, it is interesting to study the maximum number of triples that can be
oriented (in precise terms: the maximum number of cyclic triples an HTS with
this underlying TTS can have). The minimum over all TTS(v) of this number is
denoted by mc(v).

The values of mc(v) for the smallest v are known. From the classification results
in Section 2 one can see that the unique TTS(3) and TTS(4) lead to MTS(3) and
MTS(4), so mc(3) = 2 and mc(4) = 4. The unique TTS(6) cannot be oriented
and mc(6) = 7 [6]. It is further known that mc(7) = 11 and mc(9) = 18 [6].

In the current classification of hybrid triple systems, the classified systems were
checked for the number of cyclic triples. After all, one of the main motivations for
classifying combinatorial objects is to get a complete set of objects, which can be
checked for various properties. However, we shall here describe a direct and much
more efficient approach for obtaining the same result using a clique approach.

From a given TTS(v) with b = v(v−1)/3 blocks, we construct a graph G of order
2b. The graph G has two vertices for each triple of the TTS, one for each possible
way of orienting it. Two vertices of G are adjacent exactly when the corresponding
oriented blocks (as sets of ordered pairs) do not contain the same ordered pair. Two
vertices originating from the same triple of the TTS are nonadjacent. The size of
a maximum clique in this graph gives the maximum number of blocks that can be
oriented.

Given a classification of TTS(v) for v ≤ 10, it takes just seconds to deter-
mine mc(v) for these parameters. Using the program Cliquer [24], we obtained
mc(10) = 24 (the bound mc(10) ≥ 23 was obtained in [6]).
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