
Helsinki University of Technology
Department of Engineering Physics and Mathematics
Institute of Mathematics

Master’s Thesis

Classification of Steiner Quadruple Systems

Olli Pottonen

Supervisor: Professor Olavi Nevanlinna

Instructor: Professor Patric Österg̊ard

Espoo
16th November 2005

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
TEKNILLISEN FYSIIKAN JA MATEMATIIKAN OSASTO

Tekijä: Olli Pottonen

Osasto: Teknillisen fysiikan ja matematiikan osasto

Pääaine: Matematiikka

Sivuaine: Tietojenkäsittelyteoria

Työn nimi: Steinerin nelikkosysteemien luokittelu

Title in English: Classification of Steiner Quadruple Systems

Professuurin koodi ja nimi: Mat-1 Matematiikka

Työn valvoja: Professori Olavi Nevanlinna

Työn ohjaaja: Professori Patric Österg̊ard

Työn tavoitteena on luokitella 16 pisteen Steinerin nelikkosysteemit. Kyseessä on jo jonkin
aikaa avoimena olleen laskennallisen ongelman ratkaiseminen.

Työn alussa tarkastellaan Steinerin systeemeitä teoreettiselta kannalta, kuitenkin luokitte-
luun liittyviin tuloksiin keskittyen. Nelikkosysteemien olemassaoloa ja lukumäärää tutki-
taan, kuten myös niiden yhteyttä Steinerin kolmikkosysteemeihin ja tiettyihin koodeihin.
Myös Pasch–konfiguraatioita ja niiden hyödyntämistä isomorfiatarkasteluissa tarkastellaan.

McKayn kehittämä luokittelumenetelmä, kanonisilla lisäyksillä tuottaminen, esitellään var-
sin yleisellä tasolla. Menetelmää soveltamalla kehitetään luokittelualgoritmi Steinerin nelik-
kosysteemeille. Lisäksi esitetään Kasken ja Österg̊ardin kehittämä samankaltainen algorit-
mi Steinerin kolmikkosysteemeille. Myös vaihtoehtoinen, Zinovievin ja Zinovievin kehittämä
luokittelumenetelmä esitellään lyhyesti.

Nelikkosysteemejä tuotettaessa ja isomorfiakarsintaa suoritettaessa kohdataan kaksi vaikeaa
osaongelmaa: täsmällisten peitteiden etsiminen tietyille joukoille ja systeemeiden kanonisen
nimeämisen laskeminen. Näitä ongelmia ja niiden vaativuutta tarkastellaan.

Vaikka käytettävän algoritmin oikeellisuus on todistettu matemaattisella tarkkuudella, voi
ohjelmointivirhe johtaa virheellisiin tuloksiin. Tällaisten mahdollisten virheiden havaitse-
miseksi testattiin laskennan tulosten johdonmukaisuutta.

Luokittelun tuloksena saatiin yksi edustaja jokaisesta 16 pisteen Steinerin nelikkosystee-
mien isomorfialuokasta. Isomorfialuokkia on yhteensä 1,054,163 kappaletta. Luokkien edus-
tajia tutkimalla saatiin selville joitain uusia tuloksia, kuten resolvoitumattoman 16 pisteen
Steinerin nelikkosysteemin olemassaolo.

Sivumäärä: 59 Avainsanat: Steinerin nelikkosysteemit, luokittelu,
isomorfiakarsinta, johdetut sommitelmat,
Steinerin systeemit

Täytetään osastolla

Hyväksytty: Kirjasto:

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS
DEPARTMENT OF ENGINEERING PHYSICS AND MATHEMATICS

Author: Olli Pottonen

Department: Department of Engineering Physics and Mathematics

Major subject: Mathematics

Minor subject: Theoretical Computer Science

Title: Classification of Steiner Quadruple Systems

Title in Finnish: Steinerin nelikkosysteemien luokittelu

Chair: Mat-1 Mathematics

Supervisor: Professor Olavi Nevanlinna

Instructor: Professor Patric Österg̊ard

The goal of this thesis is to classify Steiner quadruple systems with 16 points and thereby
solve a computational problem that has been open for some time.

In the beginning of this thesis the Steiner quadruple systems are studied from theoretical
point of view, however with emphasis on results relevant to the classification. The existence
and number of quadruple systems are considered, as well as their connection to Steiner triple
systems and certain codes. Also Pasch configuration and their utilization in isomorphism
consideration are studied.

A classification method due to McKay, generation by canonical augmentation, is presented
on a rather general level. By applying the method a classification algorithm is developed
for Steiner quadruple systems. Also a similar algorithm due to Kaski and Österg̊ard for
classification of Steiner triple systems is presented. In addition an alternative classification
algorithm by Zinoviev and Zinoviev is briefly discussed.

When the quadruple systems are generated and the isomorph rejection carried out, two dif-
ficult subproblems are encountered: computing exact covers for certain sets and computing
canonical labellings of systems. These problems and their computational complexity are
studied.

Although correctness of the algorithm is proved mathematically, an error in the software
could lead to erroneous results. To discover potential error of this type a consistency check
was performed on the classification data.

As a result of the classification, a representative from each isomorphism class of Steiner
quadruple systems with 16 points was obtained. There are total 1,054,163 isomorphism
classes. By studying the class representatives some new results were discovered, for exam-
ple that a non-resolvable Steiner quadruple systems with 16 points exists.

Number of pages: 59 Keywords: Steiner quadruple systems, classification, isomorph
rejection, derived designs, Steiner systems

Department fills

Approved: Library code:

Preface

My work in the field of combinatorics has been really interesting. Especially
solving open research problems has been rewarding. I would like to thank my
instructor professor Patric Österg̊ard for his expert guidance on my work on
this field. Also Petteri Kaski deserves thanks for his involvement in guiding my
work.

I would also like to thank professor Olavi Nevanlinna for his supervision and
interest in my work.

Actually carrying out the classification was computationally very intensive task,
and would not have been possible had not the Computing Centre of Helsinki
University of Technology provided necessary computing resources. Thus I am
grateful to Juhani Markula and Jukka Seppänen for making this work possible.

Espoo 16th November 2005

Olli Pottonen

Contents

1 Introduction 1

2 Combinatorial Designs 4

2.1 Incidence Structures . 4

2.2 Steiner Systems . 6

2.3 Projective Spaces . 11

2.4 Pasch Configurations . 12

2.5 Codes . 14

3 Isomorph-Free Construction 17

3.1 The Zinoviev Classification Method 17

3.2 Canonical Labelling of Incidence Structures 20

3.3 Generation by Canonical Augmentation 21

3.4 Efficiency Considerations . 25

3.5 Classification of Steiner Triple Systems 26

3.6 Classification of Steiner Quadruple Systems 27

4 Auxiliary Algorithms 29

4.1 Exact Cover Search . 29

4.2 The Isomorphism Problem . 31

4.3 Partitioned Graphs . 33

4.4 nauty . 34

CONTENTS v

4.5 Point-Block Graph . 36

4.6 Pair Graph . 37

4.7 Block Graph . 39

5 Results 40

5.1 Miscellaneous results . 40

5.2 Resolvability . 43

5.3 Reliability of the Results . 43

6 Conclusions 45

A Groups and Group Actions 47

B Computational Complexity 51

Chapter 1

Introduction

Combinatorics is a branch of discrete mathematics dealing with arrangements
of finite sets satisfying certain conditions. This definition is rather broad but
the examples in this thesis hopefully give the reader a good picture of typical
combinatorial problems.

The earliest results of combinatorics were motivated by recreational problems
such as the well-known Thomas P. Kirkman’s schoolgirl problem published in
the Lady’s and Gentleman’s Diary of 1850:

Fifteen young ladies in a school walk out three abreast for seven
days in succession: it is required to arrange them daily, so that no
two walk twice abreast.

Arrangements satisfying these conditions exist and are nowadays known as
Kirkman triple systems of order 15, see Section 2.2. If the girls go to walks
three at a time instead of all concurrently, each of them seven times and no two
walk twice abreast, the arrangement is known as Steiner triple systems. Both
systems can be generalized for other numbers of girls.

Along the years practical applications for these kinds of systems have been found
in the design of statistical experiments and in other fields as well. Combinatorics
also has connections to other areas of discrete mathematics and applications in
computer science and cryptography. Perhaps most important is the connection
to coding theory, a branch of discrete mathematics motivated by the problem
of finding data encodings that can be correctly decoded in spite of occasional
errors caused by a noisy transmission channel.

One of the central problems in combinatorics is classification of different kinds
of designs, i. e., finding up to equivalence all designs of a certain kind. Results
of classification can be useful for practical problems such as finding a design
with some desired property, as well as for theoretical ones, such as finding fur-
ther evidence or counterexamples for conjectures or establishing (non)existence

1.0. Introduction 2

results.

Classification problems are closely related to counting problems, where the task
is to determine the number of equivalence classes of designs with prescribed
properties. A third important type of problems are the existence problems, in
which the task is to determine whether a design with given properties exists.
For the designs considered in this work the existence problem has been com-
pletely solved but the counting and classification problems have not. Complete
classifications and counts, obtained with computer searches, are known only for
few parameter values.

Often classification and sometimes also existence problems can only be solved
with computers. Unfortunately computers and software are not perfectly reli-
able, but reliable enough for most tasks such as approximative numerical cal-
culations. However the reliability and verifiability requirements sets for math-
ematical proofs are higher, and the use of computers for proving theorems is
problematic. In this thesis a classification result is obtained with use of com-
puters. Also in this task the reliability of computers should be addressed since
we wish to obtain an exact solution that can not be easily verified.

In this work the classification problem is solved for Steiner quadruple systems
of order 16. This task, which was considered probably impossible in 1992 [13],
was indeed possible with today’s fast computers and modern algorithms. Still
the task was laborous and required approximately 12 years of CPU time.

The main contribution of this thesis is developing an classification algorithm for
Steiner quadruple systems, and applying the algorithm for order 16. Most of the
other results are taken from literature and some have been generalized. Also
some of the theoretical results such as #P-completeness of #Exact cover
(Theorem 20), a bound for automorphism group orders (Theorem 9) and the
contents of Section 4.6 are apparently new.

The thesis is organized as follows. In Chapter 2, the relevant combinatorial
structures are introduced, and their connections and other properties are dis-
cussed, with emphasis on results that are useful considering the classification.

Chapter 3 deals with the general classification framework of generation by
canonical augmentation, and its application to Steiner systems. In addition
a method for classification of Steiner quadruple systems with limited rank is
briefly discussed.

In Chapter 4 deals with two computational problems that occur frequently in
combinatorics and need to be solved as subproblems of the classification, namely
the exact cover problem and computing canonical labellings.

In Chapter 5 the most important computational results and arguments for their
correctness are given.

Chapter 6 concludes the thesis by discussing the results and possible further

1.0. Introduction 3

research.

Appendix A contains a brief introduction to group theory, which is very useful
in studying isomorphisms. In appendix B basic concepts of computational
complexity are introduced.

Chapter 2

Combinatorial Designs

2.1 Incidence Structures

Combinatorial structures such as Steiner quadruple systems have several possi-
ble representations. Below two of these are defined. We will alternate between
these two depending on their suitability for different tasks.

Definition 1. An incidence structure is a triple (P,B, I) where P and B are
sets and I ⊆ P × B is a relation. The elements of P are called points and the
elements of B blocks. If (p, B) ∈ I, then the point p and block B are said to be
incident.

If X is an incidence structure, then we may write P (X), B(X) and I(X) for
the point set, block set and incidence relation, respectively. We say that the
set P ′ ⊆ P is incident to a block B if every p ∈ P ′ is incident to B.

Definition 2. A set system is a pair (P,B) where P is a set and B is a collection
of subsets of P . The elements of P are called points and the elements of B
blocks. A point p and a block B are said to be incident if p ∈ B.

If two blocks are incident to exactly the same points, they are called repeated
blocks. A design that does not contain repeated blocks is called simple. Non-
simple set systems are possible when the block set is considered as a multiset.

Obviously incidence structures and set systems are rather similar structures.
Each incidence structure has a unique corresponding set system. Conversely
each set system has a corresponding incidence structure, but not a unique one
since the blocks can be labelled in several ways (unless the block set is empty).
On some occasions the labelling of the blocks may contain useful additional
information whereas sometimes it may be confusing that the blocks can be
labelled in several different ways.

During the rest of this work we will consider incidence structures and set systems

2.1. INCIDENCE STRUCTURES 5

as different representations for same objects. For example the Definitions 3, 4
and 5 concern incidence structures but are also applicable to set systems.

In set system representation two blocks that are incident to a common point are
intersecting sets. Accordingly also blocks of an incidence structure are called
intersecting if they are incident to at least one common point.

Definition 3. The dual of an incidence structure X is the incidence structure
X ∗ where P (X ∗) = B(X), B(X ∗) = P (X) and I(X ∗) = {(B, p) | (p, B) ∈
I(X)}.

Definition 4. An incidence structure Y is a substructure of an incidence struc-
ture X if P (Y) ⊆ P (X), B(Y) ⊆ I(X) and I(Y) ⊆ I(X). The substructure is
proper if Y 6= X .

Definition 5. A derived design associated with an incidence structure X and
a point p ∈ P (X) is the substructure Xp of X , where

P (Xp) = P (X) \ {p} (2.1.1)

B(Xp) = {B ∈ B(X) | (p, B) ∈ I(X)}, (2.1.2)

and I(Xp) is I(X) restricted to P (Xp)×B(Xp).

Informally a derived design is obtained by deleting all blocks not incident with
p and removing the point p from all remaining blocks.

It is commonly assumed that the point and block sets are finite, although some
research concerning infinite structures has been carried out. In this thesis only
finite structures are considered.

Definition 6. Two incidence structures X and Y are isomorphic, denoted
X ∼= Y, if there exist a pair of bijections, (fP , fB), fP : P (X) → P (Y), fB :
B(X) → B(Y) such that (p, B) ∈ I(X) if and only if (fP (p), fB(B)) ∈ I(Y).
Such a pair is called an isomorphism.

Some group actions are useful for studying isomorphisms. Let X be an incidence
structure with P (X) = P and B(X) = B. Action of (g, h) ∈ SP × SB (see
Appendix A for definitions) is defined as

(g, h) ∗ X = (g, h) ∗ (P,B, I(X)) := (g ∗ P, h ∗B, (g, h) ∗ I(X)), (2.1.3)

where
(g, h) ∗ I(X) := {(g ∗ P, h ∗B) | (P,B) ∈ I(X)}. (2.1.4)

Action of g ∈ SP on the points is g∗PX := (g, e)∗X where e ∈ SB is the identity
permutation. Similarly action of h ∈ SB on the blocks is h ∗B X := (e, h) ∗ X
where e ∈ SP is the identity permutation.

Now assuming that P (X) = P (Y) = P and B(X) = B(Y) = B, the two
incidence structures X and Y are isomorphic if and only if g ∗ X = Y for some
g ∈ SP × SB.

2.2. STEINER SYSTEMS 6

The action on points is defined analogously for set systems: if X = (P,B) is a
set system and g ∈ SP , then the action is defined as g ∗ X := (P, g ∗ B). Any
action that permutes the blocks cannot be meaningfully defined for set systems.

Definition 7. If incidence structures X and Y are isomorphic so that fP is the
identity mapping, we say that X and Y are point equivalent. Analogously they
are block equivalent if fB is the identity mapping.

Two incidence structures are point equivalent if the corresponding set systems
are equal. Since forming the set system corresponding to a given incidence
structure is straightforward, deciding point equivalence is a computationally
easy problem, whereas deciding isomorphism is not (see Section 4.2).

Two incidence structures X and Y with P (X) = P (Y) = P are isomorphic if
and only if there exists g ∈ SP such that g ∗P X and Y are point equivalent.

Definition 8. The automorphism group of an incidence structure X , is the
stabilizer of X in the group SP (X) × SB(X), i. e., it consists of all isomorphisms
from X onto itself. The point automorphism group of X consists of all g ∈ SP (X)

such that (g, f) belongs to the automorphism group of X for some f . The
automorphism group of a set system (P,B) is its stabilizer in the group SP .

The automorphism group of X is denoted by Aut(X).

The automorphism group of a set system is isomorphic to the point automor-
phism group of a corresponding incidence structure. If an incidence structure is
simple, its automorphism group and point automorphism group are isomorphic.
This thesis deals with simple structures, and we need not worry about the dis-
tinction between automorphism group of a set system, the automorphism group
of a corresponding incidence structure and the point automorphism group of
the incidence structure.

During the computational part we assume that the point and block sets of all
structures are subsets of N. We denote the set off all such incidence structures
by SN. From a computational point of view this representation is quite simple
and easy to work with. Also all incidence structures do not constitute a set in
formal set theory, whereas SN does. In more theoretical parts of this work the
possible point and block sets are not limited in this way.

2.2 Steiner Systems

Definition 9. A t-(v, k, λ) design, 0 < t ≤ k ≤ v, 0 < λ is an incidence
structure with v points such that each block is incident to k points, and each
set of t distinct points is incident to exactly λ blocks.

Definition 10. A Steiner system S(t, k, v) is a t-(v, k, 1)-design.

2.2. STEINER SYSTEMS 7

The parameter v is called the order of the design, and t-(v, k, λ) designs are
called t-designs for short. Steiner systems are an important special case of t-
designs. Another important special case are balanced incomplete block designs,
BIBDs for short, which are 2-(v, k, λ) designs. Unlike some t-designs with higher
λ, all Steiner systems are simple. Furthermore all duals of Steiner systems with
2 ≤ t and k < v are also simple, and in these cases the automorphism group
and point automorphism group of a incidence structure are equal.

The main focus of this work is on Steiner quadruple systems, i. e., S(3, 4, v)
systems. Also Steiner triple systems, i. e., S(2, 3, v) systems are of importance.
We will abbreviate Steiner triple and quadruple systems of order v by STS(v)
and SQS(v), respectively. The parameter v may be omitted when there is no
need to specify the order of the systems.

Note that each derived system of a t-(v, k, λ) design is a (t− 1)-(v− 1, k− 1, λ)
design. Especially each derived system of an SQS(v) is an STS(v − 1). This
connection between STSs and SQSs is the reason for studying STS in this work.

Theorem 1. For any t-(v, k, λ) design and 0 ≤ l ≤ t, the number of blocks
containing any fixed set of l points is

bl = λ

(
v − l

t− l

)/(
k − l

t− l

)
= λ

(v − l)!(k − t)!
(k − l)!(v − t)!

(2.2.1)

Thus each t-(v, k, λ) design is also a l-(v, k, bl) design for 1 ≤ l ≤ t.

Proof. Consider set T of l points. There are
(
v−l
t−l

)
sets T ′ such that T ⊆ T ′ and

|T ′| = t. Each T ′ is incident to exactly λ blocks, and each block incident with
T is incident to

(
k−l
t−l

)
sets of form T ′.

The values b0 and b1 are of special interest. The total number of blocks in the
design is b0, and the number of blocks incident to any given point, or replicate
number, is r = b1.

The requirement that bl must be integer for 0 ≤ l ≤ t gives necessary conditions
for the existence of S(t, k, v). The values of v satisfying these conditions are
called admissible.

Theorem 2. If a Steiner triple system of order v exists, then v ≡ 1 or 3
(mod 6).

Proof. As stated above, the requirement that bl be integers is a necessary exis-
tence condition. For an STS(v) these conditions are 2 | v − 1 and 6 | v(v − 1).
Only v ≡ 0, 1 or 3 (mod 6) satisfy the latter requirement, and of these only
1 or 3 (mod 6) satisfy both.

Theorem 3. If a Steiner quadruple system of order v exists, then v ≡ 2 or 4
(mod 6).

2.2. STEINER SYSTEMS 8

Proof. Since a derived system of an SQS(v) is an STS(v− 1), the claim follows
from Theorem 2.

Theorem 4. A Steiner quadruple system of order v exists if and only if
v ≡ 2 or 4 (mod 6), v ≥ 4.

Proof. The “only if” is only a repetition of Theorem 3. Recursive construction
of an SQS(v) for v ≡ 2 or 4 (mod 6), v ≥ 4, is given by Hanani [12].

Theorem 5. A Steiner triple system of order v exists if and only if
v ≡ 1 or 3 (mod 6), v ≥ 3.

Proof. The “only if” part is a mere repetition of Theorem 2. When v ≡ 1 or 3
(mod 6), v ≥ 3, by Theorem 4 there exists an SQS(v + 1), derived designs of
which are STS(v).

Existence of STS(v) for admissible v can be proved without resorting to Theo-
rem 4. In fact it can be proved with much simpler proof than what is required
for Theorem 4, and it was first proved by Kirkman [18] over a century before
the existence problem of SQS(v) was solved.

The survey [13] contains an overview of Hanani’s original proof as well as of
another, more sophisticated proof, also due to Hanani. Both proofs rely on
several recursive constructions. It is still an open problem to prove Theorem 4
by direct, i. e., non-recursive, construction.

Let N(v) be the number of nonisomorphic Steiner quadruple systems with v
points. It is well known [13] that N(4) = 1 (trivial), N(8) = N(10) = 1
(originally in [2]), and N(14) = 4 (originally in [31]). Prior to this work N(16)
was unknown but some lower bounds were known. These results are N(16) ≥
8 by Doyen and Vandensavel [8], N(16) ≥ 15 by Gibbons and Mathon [10],
N(16) ≥ 282 by Gibbons, Mathon and Corneil [11], N(16) ≥ 31,021 by Lindner
and Rosa [21], the slightly improved result N(16) ≥ 31,310 also by Lindner and
Rosa [22], and N(16) ≥ 712,250 by Zinoviev and Zinoviev [39, 41, 43]. The
last of these results is discussed in Section 3.1. It was also established in [21]
that N(20) ≥ 1017. Thus a complete classification of SQS(20) requires huge
advances in either computer technology or classification algorithms.

For admissible values, N(v) grows exponentially, but the exact growth rate is
not known. Lenz [20] has proved the following lower bound for the asymptotic
growth rate using recursive constructions.

Theorem 6. For admissible v,

lim inf
v→∞

log N(v)
v3

> 0 (2.2.2)

Obtaining the following upper bound on N(v) is not difficult.

2.2. STEINER SYSTEMS 9

Theorem 7.

log N(v) ≤ b0 log v <
v3

24
log v (2.2.3)

where b0 is the number of blocks.

Proof. Fix the point set and any total order on it. Now every SQS(v) and
many other set systems can be obtained with the following algorithm: Find the
lexicographically smallest uncovered triple T . Choose some v, and add T ∪{v}
to the block set. Repeat b0 times.

The algorithm makes b0 choices with v possibilities each time. Thus there are
at most vb0 SQS(v) and log N(v) ≤ b0 log v. Theorem 1 gives b0 = v(v−1)(v−2)

24 <
v3

24 .

By theorem 6 N(v) grows exponentially. It is believed that the lower bound can
be improved and log N(v) has asymptotical growth rate v3 log v(1 + o(1)) [13].
(The formulation of Theorems 6 given in [13] is slightly inaccurate.)

Let S(v) be the number of nonisomorphic Steiner triple systems with v points.
The known values are S(3) = S(7) = S(9) = 1, S(13) = 2, S(15) = 80
and S(19) = 11,084,874,829. For v ≤ 15 the values have been obtained by
hand calculation—and later the values have been verified with computers—and
the value of S(19) was computed by Kaski and Österg̊ard [14]. The following
theorem is from [14].

Theorem 8. For all admissible v,

(e−5v)v2/6 ≤ S(v) ≤ (e−1/2v)v2/6. (2.2.4)

Every derived system of an SQS(16) is an STS(15), as noted above. The con-
verse result, that every STS(15) is a derived system of a SQS(16), also holds.
This result was completed by Diener, Schmitt and De Vries [7]. The result
was based on computer searches, and it is an interesting open question whether
similar result holds for all admissible v. For every v such that STS(v) exist,
also SQS(v +1) exist, and it is plausible that every STS(v) is a derived system.

Definition 11. For an SQS S, β(S) denotes the number of pairwise noniso-
morphic derived systems.

Clearly 1 ≤ β(S) ≤ v. An SQS(v) S is called heterogeneous if β(S) = v and
homogeneous if β(S) = 1. It is known that at least 69 of the 80 STS(15) occur
in homogeneous SQS and at least one does not [35]. Not much research has
been carried out concerning homogeneous and heterogeneous SQSs.

While attempting a classification of Steiner quadruple systems, it may be prac-
tical to have a priori bound for the automorphism group order of the systems.
The following theorem gives such a bound.

2.2. STEINER SYSTEMS 10

Theorem 9. Assume that S is a Steiner system with v points and S ′ is one of
its derived systems. Then |Aut(S)| ≤ v|Aut(S ′)| where equality may hold only
if the action of Aut(S) on the point set is transitive.

Proof. Assume that S has the point set P = {p1, p2, . . . , pv} and that S ′ is the
derived system associated with the point p1.

Now Aut(S) ⊆ SP and Aut(S ′) ⊆ SP ′ , where P ′ = P \ {p1}. Aut(S ′) can be
considered as a subgroup of SP by defining g(p1) = p1 for every g ∈ SP ′ .

Define Gi = {g ∈ Aut(S) | g(pi) = p1}. Note that Gi may be empty for every
i 6= 1, and every Gi is nonempty if and only if the action of Aut(S) is transitive.
Now Aut(S) = G1 ∪ G2 ∪ · · · ∪ Gv. Note that any g ∈ Aut(S) that fixes p1

is also an automorphism of S ′. Thus h ∈ Gi implies Gi ⊆ Aut(S ′) · h, and
|Gi| ≤ |Aut(S ′)|.

The largest automorphism group order for an STS(15) is 20,160 and only one
STS(15) has such an automorphism group. Thus the automorphism group
order of an SQS(16) may be at most 16 · 20,160 = 322,560. Furthermore, only
a homogeneous SQS with automorphisms acting transitively on the point set
may have achieve the upper bound. As can be seen in Table 5.3, there is one
such SQS.

A BSQS(v) is a colored SQS(v), that is, SQS(v) whose each point has a color
assigned to it. The coloring is proper if each block contains two points with
the same color and two points with different colors. The minimum (maximum)
number of colors that occur in a strict coloring of a BSQS(v) is its lower (upper)
chromatic number, denoted by χ (χ̄). Lo Faro, Milazzo, and Tripodi have
proved that for BSQS(16) χ̄ = 3 and χ = 2 or χ = 3 [9].

Definition 12. Consider an incidence structure X = (P,B, I). A parallel class
of X is a set R ⊆ B such that for each p ∈ P there is a unique B ∈ R to which
p is incident. A resolution of X is partition of B into parallel classes.

Definition 13. Two resolutions R and R′ are isomorphic if there exists an
isomorphism (fP , fB) of the associated incidence structures such that fB maps
parallel classes of R to parallel classes of R′.

A design may have several nonisomorphic resolutions, or no resolutions at all.
A design that has a resolution is called resolvable.

Each parallel class of an S(t, k, v) must consist of v/k blocks. This gives a
necessary condition for the existence of a resolution. The number of parallel
classes is equal to the replicate number of the design. A Kirkman triple system
mentioned in Chapter 1 is a resolution of a Steiner triple system.

The following lemma made practical implementation of some resolution related
algorithms easier.

2.3. PROJECTIVE SPACES 11

Lemma 10. The blocks of an SQS(16) form at most 3,185 parallel classes.

Proof. For SQS(16), Theorem 1 gives b0 = 140, b1 = 35, and b2 = 7.

Consider a parallel class {B1, B2, B3, B4}. The block B1 can be chosen in 140
ways. By inclusion-exclusion principle, there are 4(b1 − 1)−

(
4
2

)
(b2 − 1) = 100

other blocks that intersect B1, and 39 blocks that do not. Thus B2 can be
chosen in 39 ways.

Consider the blocks that intersect neither B1 nor B2. There are at most(
8
3

)/(
4
3

)
= 14 of those. Accordingly B3 can be chosen in at most 14 differ-

ent ways. Since any Steiner system is simple, the choices of B1, B2 and B3

determine B4 uniquely.

Since the same parallel class can be formed in 4! different ways by choosing the
same blocks in different order, the total number of parallel classes is at most
140× 39× 14× 1/4! = 3185.

2.3 Projective Spaces

In Section 2.4 Pasch configurations are defined and studied. To facilitate that
study a brief overview of projective spaces is included here.

Definition 14. Let q be a prime power implying that a Galois field Fq exists.
A projective space PG(n, q) is an incidence structure having the 1-dimensional
subspaces of Fn+1

q as points and the 2-dimensional subspaces as blocks. A point
is incident to the blocks containing it as a subspace.

Theorem 11. Every PG(n, q) is an S(2, q + 1, qn+1−1
q−1). Especially a PG(n, 2)

is an STS(2n+1 − 1).

Proof. Clearly for two non-equal one-dimensional subspaces there is a unique
two-dimensional subspace that contains both of them. Hence we only need to
verify that the parameters q + 1 and qn+1−1

q−1 are correct.

The set F∗ := Fn+1
q \ {0} consists of qn+1 − 1 elements. Linear dependence,

when considered as a binary relation, is an equivalence relation in F∗ having
equivalence classes of size q − 1. These equivalence classes correspond to the
one-dimensional subspaces of Fn+1

q . Thus the number of points of the design is
qn+1−1

q−1 .

Now assume that L ⊆ Fn+1
q is a two-dimensional subspace spanned by linearly

independent vectors x,y. Thus L = {αx + βy | α, β ∈ Fq}, and we see that
L consists of q2 elements and L∗ = L \ {0} of q2 − 1 elements. As above, by
considering equivalence classes of L∗, we conclude that L contains q2−1

q−1 = q +1
distinct one-dimensional subspaces.

2.4. PASCH CONFIGURATIONS 12

In the case q = 2, the result of adding any vector to itself is zero. If the vector
0 is ignored, each point of PG(n, 2) is a vector in Fn+1

2 \ {0} and the blocks of
PG(n, 2) are the sets {x, y, z} ⊆ Fn+1

2 \ {0} such that x + y + z = 0.

Similarly one obtains a SQS(2n+1) by taking the point set Zn+1
2 and as blocks

the 4-sets {w, x, y, z} such that w + x + y + z = 0. Especially this construction
gives the unique SQS(8).

2.4 Pasch Configurations

Pasch configurations are easily detectable substructures of STSs that are very
useful for efficiently deciding isomorphism of STSs.

Definition 15. A Pasch configuration (or a quadrilateral or a fragment) is a
substructure of an STS that has block set of form {{a, b, c}, {a, d, e}, {b, d, f},
{c, e, f}}, and the point set {a, b, c, d, e, f}.

The Pasch configuration is the only substructure of an STS with 6 points and
4 blocks such that each block is incident with 3 points. It is also the only
substructure with 6 point such that each point is incident with 2 blocks and
each block with 3 points.

The number of Pasch configurations occurring in STSs varies significantly, as
is shown by the following theorems.

Theorem 12. Anti-Pasch STS(v), i. e., STS(v) that do not contain Pasch
configurations exist for infinitely many v.

There are some admissible v for which anti-Pasch systems do not exist, e. g.,
v = 7 and 13. For more details and a proof of Theorem 12, the reader is referred
to [23].

The following result was pointed out by Stinson [34].

Theorem 13. Define p(v) := v(v − 1)(v − 3)/24. Any STS(v) contains at
most p(v) Pasch configurations. Furthermore a STS(v) contains p(v) Pasch
configurations if and only if it is a projective space PG(n, 2). Thus for infinitely
many v there exist STS(v) with p(v) Pasch configurations.

Proof. Choose a point a. Obviously it may be chosen in v ways. There are (v−
1)/2 blocks that contain it and thus (v−1)(v−3)/4 pairs of blocks intersecting in
a. Each such pair may occur in at most two Pasch configurations. Since each
Pasch configuration contains six points, same configuration can be obtained
with six different choices of a, and there are at most 1

6v(v − 1)(v − 3)/4 =
v(v−1)(v−3)/24 = p(v) Pasch configurations, and the upper bound is obtained
if and only if each pair of intersecting blocks occurs in two Pasch configurations.

2.4. PASCH CONFIGURATIONS 13

Now consider a PG(n, 2) and two intersecting blocks, {a,b, c} and {a,x,y}.
By the observations in Section 2.3 we have b = a + c and x = a + y. Thus
b + x + (c + y) = 2(a + c + y) = 0. Clearly c + y + (c + y) = 0. Thus the STS
contains the blocks {b,x, c+y} and {c,y, c+y} that form Pasch configuration
with the two original blocks. Similarly the STS must contain blocks {b,y, c+x}
and {c,x, c+x}, and the two original blocks occur in two Pasch configurations.
Hence PG(n, 2) contains p(v) Pasch configurations.

To obtain the converse implication, assume that (P,B) is an STS(v) with p(v)
Pasch configurations. Thus if {a, b, c} and {a, d, e} are blocks of the STS, then
so are {b, d, f}, {c, e, f}, {b, e, g} and {c, d, g}, for some f, g.

Now define G = P∪{0} and define addition in G by p+0 = 0+p = p, p+p = 0
and for p, q, r ∈ P, p 6= q, p + q = r where r is chosen so that B contains the
block {p, q, r}. Since the structure is an STS, addition of any two points is
well defined. The Pasch property implies that addition is associative. It is easy
to see that addition as defined above is commutative and that each element
except 0 has order 2. Thus G is an additive group isomorphic to Zn+1

2 with
v = 2n+1 − 1. By defining multiplication as 0 · x = 0, 1 · x = x, the group G is
extended to a vector space isomorphic to Fn+1

2 , establishing that the STS is a
PG(n, 2).

It seems that no detailed description of an algorithm for finding all Pasch con-
figurations can be found in the literature. However it has long been known
that all Pasch configurations of a STS(v) can be found in time O(v3) [34]. The
following simple algorithm achieves this time bound.

For any two intersecting blocks {a, b, c}, {a, d, e}, find the blocks containing the
pairs {b, d} and {c, e}. If those two blocks intersect, the four blocks form a
Pasch configuration. Similarly find the blocks containing the pairs {b, e} and
{c, d}. To ensure that each Pasch configuration is counted exactly once, it is
required that a is smallest of the points occurring in the configuration, with
respect to some total order of the point set.

With suitable preprocessing the block containing a given pair of points can
be found in constant time. Each point occurs in O(v) blocks and thus there
are O(v2) pairs of blocks that intersect in a. Since there are O(v) choices
for a, the running time of the algorithm is O(v3). Since O(v3) is the best
possible upper bound for the number of Pasch configurations, the algorithm
has optimal asymptotical running time for finding all Pasch configurations. It
is not known whether only determining the number of Pasch configurations can
be done quicker.

Note that corresponding points in isomorphic systems occur in equally many
Pasch configurations, and isomorphic systems have equally many Pasch config-
urations.

Consider an STS(v) S. For p ∈ P (S) define q(p) as the number of Pasch

2.5. CODES 14

configurations p occurs in. Now the multiset q(S) = {q(p) | p ∈ P (S)} is an
easily computable invariant for STS. For v = 15, this invariant is complete, i. e.,
it assigns different values for non-isomorphic systems. This makes the invariant
very useful.

2.5 Codes

Definition 16. Let Zq be the ring of integers modulo q. A q-ary code of
length n is an arbitrary non-empty subset C of Zn

q . The elements of C are
called codewords.

We define the support of a codeword x similarly to the support of a function
as supp(x) := {i ∈ {1, 2, . . . , n} | xi 6= 0}.

Definition 17. The Hamming weight of a codeword x is the number of nonzero
elements and is denoted by wt(x). The metric

d(x,y) := |{i ∈ {1, 2, . . . , n} | xi 6= yi}| (2.5.1)

is called the Hamming distance or the Hamming metric.

It is easy to see that the Hamming metric satisfies the axioms of a metric.
Also Hamming weight and distance are connected: d(x,y) = wt(x − y) and
wt(x) = d(x,0). Furthermore wt(x) = | supp(x)|.

The minimum distance of code C ⊆ Zn
q with at least two codewords is d(C) =

min{d(x,y) | x,y ∈ C,x 6= y}. A code has constant weight w if wt(x) = w for
every x ∈ C. The cardinality of a code is simply the number of codewords, |C|.

A code over Zq is called a q-ary code. A code with q = 2 is called binary.

Definition 18. An (n, d, N)q code is a q-ary code with length n, cardinality
N and minimum distance d. An (n, w, d, N) code is an (n, d, N)2 code with
constant weight w.

Codes with specified minimum distance are often called error-correcting codes,
since a codeword of a code with minimum distance d may be reconstructed if
it has at most bd−1

2 c erroneous coordinates. Also up to d − 1 errors will be
detected for certain, and if d is large enough, any number of errors will be
detected with a high probability. Obviously error correction and detection are
desirable in data transmission and recording, although mere error detection is
of limited use in the latter case.

In the aforementioned applications codes should have large cardinality to max-
imize data throughput. Also some regularity properties of the code may be
useful considering efficiency of data processing.

2.5. CODES 15

Considering the use of codes for data encoding it is irrelevant whether the code
is subset of Zn

q or subset of Kn for some K with cardinality q. If K is a Galois
field Fpl , p prime, then Fn

pl is a vector space over K. This algebraic structure
may be useful. Use of the field structure is possible for some codes over Zn

q ,
since the Galois field Fp, p prime, is equal to Zp.

The rank of a code C ⊆ Fq, denoted by rank(C), is the dimension of the
subspace of Fn

q spanned by the code. A code is linear if it is a subspace of Fn
q .

The inner product in Fn
q is defined as x · y = x1y1 + · · ·+ xnyn.

Unfortunately following the common conventions leads to using · to denote both
group multiplication and the inner product, but it will be clear from context
which operation is meant.

Definition 19. Let C be a code over Fq. The dual code of C, denoted by C⊥,
is the code C⊥ = {x ∈ Fn

q | x · c = 0 for every c ∈ C}.

It is easy to verify that every dual code is linear. The following theorem is a
well known result of linear algebra.

Theorem 14. For any code C over Fn
q

rank(C) + rank(C⊥) = n. (2.5.2)

Proof. Let A be a matrix having words of C as rows. A defines a linear mapping.
Now the claim follows from [3, Section 14, Theorems 7.1 and 7.7].

A binary code C ⊆ Zn
2 can be represented as a incidence structure with point

set {1, 2, . . . , n}, block set C and incidence relation I = {(m,x) | xm 6= 0}.
Thus a codeword is incident to its support. Also every incidence structure can
be represented as a binary code, but not uniquely: the point set may be mapped
to {1, 2, . . . , n} in several ways. However all choices lead to isomorphic codes.

Theorem 15. An S(t, k, v), v > k corresponds to a (v, k, 2(k− t + 1), N) code
where N =

(
v
t

)/(
k
t

)
, and vice versa.

Proof. Consider codewords x,y such that wt(x) = wt(y) = w and P =
supp(x) ∩ supp(y). The proof is based on the following equation:

d(x,y) = | supp(x) \ supp(y)|+ | supp(y) \ supp(x)| = 2w − 2|P |. (2.5.3)

The condition v > k excludes the degenerate special case where the Steiner
systems contains only one block and the code only one word.

Clearly an S(t, k, v) corresponds to a code with constant weight k. Theorem 1
gives the cardinality N . Two blocks of a S(t, k, v) have at most t − 1 points
incident to both of them, thus for the corresponding code |P | < t − 1 and

2.5. CODES 16

d(x,y) ≥ 2(k−t+1) when x 6= y by (2.5.3). Accordingly the code has minimum
distance at least 2(k − t + 1). Since v > k, there are two blocks intersecting in
t− 1 points and the minimum distance is exactly 2(k − t + 1).

Consider an incidence structure corresponding to a (v, k, 2(k− t + 1), N) code.
The incidence structure covers each set of t points at most once, for if there
would be some set P of t points incident to two blocks, the distance of the
codewords corresponding to the blocks would be at most 2k − 2|P | = 2k − 2t,
a contradiction. Since N =

(
v
t

)/(
k
t

)
, the blocks cover all sets of t points.

Especially the SQS(16) correspond to (16, 4, 4, 140) codes.

Definition 20. The rank of an SQS is the rank of the corresponding (v, 4, 4, b0)
code.

The results in [39] imply that the rank of an SQS(16) is at least 11. Since
each block of an SQS is incident with an even number of points, the vector
v = (1, 1, . . . , 1) belongs to the dual code of any SQS(16) and the rank of an
SQS(16) may be at most 15.

Chapter 3

Isomorph-Free Construction

Typically classification algorithms consists of two parts: exhaustive generation
and isomorph rejection. In advanced algorithms these two parts are not inde-
pendent, but rather the isomorph rejection relies on the generation being done
in certain way.

Having some sort of substructures as a starting point in the exhaustive gener-
ation may enhance efficiency of the algorithm be eliminating symmetry. These
substructures are then completed with some kind of exhaustive search.

In several cases some other than the most straightforward representation of the
combinatorial structures is employed in a classification algorithm for efficiency
reasons.

There are some general classification frameworks that can be applied for clas-
sification of all kinds of combinatorial structures. In this section we present
one such framework and discuss applying it for classification of STS and SQS.
Before that we briefly discuss another kind of classification algorithm developed
by Zinoviev and Zinoviev. This algorithm is obtained by detailed analysis of
the SQS(16) instead of applying a general framework.

3.1 The Zinoviev Classification Method

This section contains a brief overview of the classification methods with which
Zinoviev and Zinoviev [39, 41] classified SQS(16) with rank at most 14. In their
work several codes are used including the code representation of SQS given by
Theorem 15. Before discussing classification in greater detail we need some
preliminary results, which are generalizations of results mentioned in [39].

Lemma 16. Let C be a code corresponding to an STS(v). Then every x 6= 0
in the dual code of C has weight (v + 1)/2.

3.1. THE ZINOVIEV CLASSIFICATION METHOD 18

Note that we consider the dual code of a nonlinear code. This is an unusual,
but a completely valid approach. We could equivalently study the dual code of
the linear code spanned by C. These remarks apply to Theorem 17 as well.

Proof. First note that v ≡ 1, 3 (mod 6) implies that v+1
2 is an integer.

Denote the coordinates of x by xi, i. e., x = (x1, x2, . . . , xv). Since x 6= 0,
we may assume without loss of generality that x1 = 1. Consider the words
y1,y2, . . . ,yl of C with the element 1 in their support. Since C corresponds
to a STS, for each i ∈ {2, 3, . . . , v} there is unique yk such that i ∈ supp(yk).
Now assume that supp(yk) = {1, i, j}. Since yk is in the dual of C, yk · x =
x1 + xi + xj = 0 and either xi = 0, xj = 1 or xi = 1, xj = 0. Thus supp(x)
contains 1 and exactly half of {2, 3, . . . , v}, and | supp(x)| = 1 + v−1

2 .

Theorem 17. Assume that C is a code of a S(t+1, t, v) system, t ≥ 2, t+1 <
v and x ∈ C⊥. For odd t, wt(x) ∈ {0, v−t+3

2 , v} and for even t, wt(x) ∈
{0, v−t+3

2 }.

Proof. For t = 2 the claim follows from Lemma 16. We proceed with induction.

Assume that t is odd and that the claim holds for t−1. If every coordinate of x is
equal to 1, claim holds. If xi = 0, consider the derived design associated with i.
By removing coordinate xi from x one obtains a vector x′ which is in dual code of
the derived design. By the induction hypothesis wt(x′) ∈ {0, (v−1)−(t−1)+3

2 } =
{0, v−t+3

2 }. Since wt(x) = wt(x′), the claim holds.

Now assume that t is even and that the claim holds for t − 1. Since k =
t + 1 is odd, xi = 0 for some i. Defining x′ as above, one concludes that
wt(x) = wt(x′) ∈ {0, (v−1)−(t−1)−3

2 , v − 1} = {0, v−t−3
2 , v − 1}. For the sake

of contradiction assume that x has weight v − 1 and that xi = 0. Since k =
t + 1 < v, by (2.2.1) we have b1 < b0, and C contains at least one word c
such that ci = 0. Since wt(ci) = k is odd, x · c = 1, a contradiction. Thus
wt(x) ∈ {0, v−t−3

2 }.

Corollary 18. If C is a code corresponding to an SQS(v), then for any x ∈ C⊥

wt(x) ∈ {0, v/2, v}.

Proof. If v = t + 1 = 4, then the claim holds. For v > 4 the claim follows
directly from Theorem 17.

By applying previous results we obtain a lower bound for the minimum distance
of dual codes of Steiner systems with k = t + 1. Assume x,y ∈ C⊥, x 6= y and
recall that d(x,y) = wt(x− y). Since any dual code is linear, 0 6= x− y ∈ C⊥.
Theorem 17 gives us lower bound for the weight of any non-zero vector z ∈
C⊥, which is lower bound for the minimum distance of C⊥ by the preceding
calculation.

3.1. THE ZINOVIEV CLASSIFICATION METHOD 19

Now assume that C is the code of an SQS(16) with rank at most 14, in which
case the rank of C⊥ is at least 2. As noted in Section 2.5, the vector v =
(1, 1, . . . , 1) belongs to the dual code of C. Since the rank of C⊥ is at least two,
C⊥ contains a codeword x that has weight 8. Thus C⊥ contains the vectors
x and x + v. Without loss of generality we may assume that the supports of
those vectors are L = {1, 2, . . . , 8} and R = {9, 10, . . . , 17}, respectively. Thus
for each codeword x ∈ C, | supp(x)∩L| and | supp(x)∩R| are both even. Thus
the set C can be partitioned into sets S0, S2 and S4, where Si = {x ∈ C |
supp(x) ∩ L = i}.

For two codewords x and y over Z8
2, denote the codeword of Z16

2 obtained by
concatenating x and y by x ‖ y. Let C1 be the code {x | x ‖ 0 ∈ S4} and
C2 the code {x | 0 ‖ x ∈ S0}. The code C1 corresponds to an SQS(8), as
does C2. The SQS(8) is unique (up to isomorphism) and given in Section 2.3.
Thus we may without loss of generality assume that C1 = C2. To obtain com-
plete classification, possible choices for S2 need to be classified up to Aut(C1)
isomorphism.

For the rest of this section by partition we mean an ordered partition L =
(L1, . . . , L7) of all codewords over Z8

2 with weight 2 such that for x, y ∈ Li

supp(x)∩ supp(y) = ∅ unless x = y. Equivalently we may require that each Li

is a (8, 2, 4, 4) code. Yet another equivalent requirement is as follows: equate
codeword x with supp(x) = {k, l} with edge {k, l} in the complete graph with
vertex set {1, 2, . . . , 8}. Now a partition corresponds to a 1-factor of the com-
plete graph.

Denote by ei the codeword over Z8
2 with supp(ei) = {i, 8}, 1 ≤ i ≤ 7. The

heading associated with the set S2 is its subset F = {x ‖ y ∈ S2 | x =
ei or y = ei for some i}.

Up to isomorphism all headings can be formed as follows. Define the action
of π ∈ S7 on (L1, . . . , L7) by π ∗ (L1, . . . , L7) = (Lπ−1(1), . . . , Lπ−1(7)), and let
QL denote the subgroup of permutations of S7 for which the partition π ∗ L is
Aut(C1)-isomorphic to L. Classify the partitions L up to Aut(C1) isomorphism
and the partitions L′ up to Aut(C1) isomorphisms that fix the point 8, and call
the isomorphism class representatives thus obtained canonical partitions. Now
by constructing sets of form {eπ−1(i) ‖ x | x ∈ L′i} ∩ {y ‖ ei | y ∈ Lπ−1(i)},
where L and L′ are chosen among the canonical partitions and π from (QL′ , QL)
double coset representatives of S7, one gets a complete classification of headings.

When headings have been classified, all their extensions to a valid set S2 were
searched, and a final isomorph rejection was carried out. An invariant based on
the isomorphism classes of the derived designs was employed in the classifica-
tion; the same invariant is employed in the classification algorithm developed
in this thesis.

If the rank of C is at most 13, duality consideration lead to four sets L1, L2, L3, L4

such that cardinality of each Li is four and | supp(x)∩Li| is even for each code-

3.2. CANONICAL LABELLING OF INCIDENCE STRUCTURES20

word x ∈ C. In this case the blocks can be partitioned into 3 sets S1, S2 and
S4 where each x ∈ Si intersect i of the sets L1, L2, L3, L4. The structure of S1

is trivial and unique. The code S4 corresponds to a (4, 2, 64)4 code and S2 to a
(4, 2, 18)4 code with constant weight 2.

Classification of SQS(16) with rank at most 13 is achieved as follows. Classify
the possible S2 and S4 codes. For each pair (S2, S4) find the (Aut(S2),Aut(S4))
double coset representatives in the group Aut(S1), and for each representative π
construct the SQS that corresponds to codes S1, S2 and π ∗S4. Finally perform
isomorph rejection.

3.2 Canonical Labelling of Incidence Structures

One way of deciding isomorphism, or any other equivalence relation, is by com-
puting canonical representations, a concept which is formalized by the following
definition.

Definition 21. For a set T and an equivalence relation ∼=, a canonical repre-
sentation is given by a function f : T → T such that, for any s ∈ T, s ∼= f(s)
and for any s, r ∈ T , s ∼= r implies f(s) = f(r).

Now f(s) is the canonical representation of s, and s ∼= r if and only if f(s) =
f(r).

On many occasions a procedure for computing canonical representations is more
useful than a procedure for deciding equivalence. As a simple example consider
a set Q ⊆ T , |Q| = n. Partitioning Q into equivalence classes may require
n(n − 1)/2 calls to a procedure deciding isomorphism of two elements. How-
ever, using canonical representations only n calls of the canonical representative
procedure and total O(n log n) operations are required: compute the canonical
representation for each element of Q, and sort those.

In isomorphism consideration even more useful than canonical representation
is the isomorphism that maps an element to its canonical representation.

Definition 22. Assume that the elements of T are equivalent if they are on
the same G-orbit, that is, a ∼= b if a = g ∗ b for some g ∈ G. Now a function
g : S → G is a canonical labelling if the function f : S → S, s 7→ g(s) ∗ s gives
a canonical representation.

This definition can naturally be applied to incidence structures provided that
we have a proper acting group G. The equivalence relation used here is isomor-
phism.

Definition 23. A function τ : SN → SN × SN such that S ∼= S′ implies that
τ(S) ∗ S = τ(S′) ∗ S′ will be called a canonical labelling.

3.3. GENERATION BY CANONICAL AUGMENTATION 21

A function τP : SN such that S ∼= S′ implies that τP (S)∗P S and τP (S′)∗P S′ are
point equivalent is called a point canonical labelling. Block canonical labelling,
denoted by τB, is defined analogously.

If τP is a point canonical labelling, one can define a canonical labelling based
on it. For S ∈ SN, consider lexicographical order of the blocks of τP (S) ∗P S
when considered as a set system. Let τB(S) be the function that maps the
smallest block (in lexicographical order) to 1, the second smallest to 2 etc. Now
(τP (S), τB(S)) is a canonical labelling of S. By similar construction one obtains
a canonical labelling from a block canonical labelling.

Also each canonical labelling is of the form τ(S) = (τP (S), τB(S)), where τP

and τB are canonical labellings of points and blocks.

In Chapter 4 the canonical labelling used in the SQS classification is considered
in greater detail and from a computational point of view. In practice having a
canonical labelling for SQS suffices, and accordingly the algorithm uses some
tailored optimizations. However a canonical labelling of arbitrary incidence
structures is a nice theoretical tool, and could also be computed if necessary.

3.3 Generation by Canonical Augmentation

A sophisticated and very general classification framework was described by
McKay in [30]. In this section a simpler variant of that framework is described.
This variant is applicable only to classification of incidence structures. Still it
is more general than what is required for the SQS classification.

As mentioned in Section 2.1, in the classification we assume that all incidence
structures belong to SN. Some well-order on the set SN will be needed, that
is, we expect that there is a total order on SN so that each non-empty set has a
smallest element. Since SN is countably infinite, the requirement is not trivial
but easy to fulfill.

In the isomorphism considerations we employ the action by the group G =
SN×SN, for structures of SN are isomorphic if and only if they are on the same
G-orbit.

The “empty” incidence structure, i. e., one that has the empty set as both
point and block sets, will be denoted as ε. Note that ε is a substructure of any
incidence structure.

Assume that there is a finite set S , ε 6∈ S , of incidence structures of interest
such that S is closed under the action of G. Now the classification framework
requires an extension relation R ⊆ S ×S , a canonical substructure function
m : S → S ∪ {ε} and an invariant function f : S → N such that the following
requirements hold:

3.3. GENERATION BY CANONICAL AUGMENTATION 22

(R1) (S′, S) ∈ R implies that S is a proper substructure of S′.

(R2) For each g ∈ G, (S′, S) ∈ R implies (g ∗ S′, g ∗ S) ∈ R.

(R3) For each S ∈ S , (m(S), S) ∈ R unless m(S) = ε.

(R4) If S′ ∼= S, there exists g ∈ G such that S′ = g ∗ S and m(S′) = g ∗m(S).

(R5) f(g ∗ S) = f(S) for every g.

(R6) If (S′, S) ∈ R, then f(S′) ≥ f(m(S)).

If (S′, S) ∈ R, then S is called an extension of S′. The process of finding all
S for which (S′, S) ∈ R is called extending S′. One possible way of extending
substructures will be considered in Section 4.1.

The original framework by McKay did not include a invariant function. This
version of the framework essentially reduces to a framework without an invariant
if f is any integral constant (which clearly satisfies (R5) and (R6)).

The canonical labelling can be utilized in the definition and computation of
canonical substructures as suggested by Kaski [17]. Namely, if u : S → S ∪
{ε} is an arbitrary function that maps each structure to some of its proper
substructures, then the mapping S 7→ m(S) = τ(S)−1 ∗ u(τ(S) ∗ S) satisfies
(R4). To see this, assume that S and S′ are isomorphic, hence τ(S) ∗ S =
τ(S′) ∗ S′, which implies τ(S) ∗ m(S) = τ(S′) ∗ m(S′), and further m(S) =
τ(S)−1τ(S′) ∗m(S′). Also S = τ(S)−1τ(S′) ∗ S′.

Invariants are very useful in classifications. An invariant can be used to speed up
the computation of a canonical labelling as described in Section 4.4, in which
case the function f can be based on the same invariant, and equation (R6)
will hold because of the way the invariant was used in the computation of the
canonical labelling. See Section 4.4 for more details.

We call a structure S ∈ S reducible if there exists an S′ ∈ S such that
(S′, S) ∈ R. Otherwise S is irreducible. Following the convention in [14] the
irreducible objects are called seeds. The classification of seeds is a separate
and on many occasions much easier task. Let S ′

0 be a maximal set of pairwise
nonisomorphic seeds which can be obtained by classifying the seeds.

Still one more function is needed: the order of a structure. In this work order
does not mean quite the same thing as in [30]. The order of S is denoted by
r(S) and defined as follows. The order of any irreducible structure is 0. The
order of a reducible structure S is r(S) = r(m(S))+1. By (R1), r is well defined
and finite for every S. By (R2),(R3), and (R4) isomorphic systems have equal
order. We denote the set of structures with order n by Sn. Especially S0 is
the set of irreducible structures.

Now the elements of S can be classified by calling the procedure Design-C1
once for every S′ ∈ S ′

0.

3.3. GENERATION BY CANONICAL AUGMENTATION 23

Design-C1(S′)
1 print S′

2 for every S ∈ S such that (S′, S) ∈ R
3 do
4 if f(S′′) < f(S′) for some S′′ such that (S′′, S) ∈ R
5 then reject S
6 if S′ is not in the Aut(S)-orbit of m(S)
7 then reject S
8 if S is not the smallest element in its Aut(S′)-orbit,
9 then reject S

10 if s has not been rejected
11 then Design-C1(S)

We call the tests performed in lines 4, 6 and 8 of the procedure Design-C1 the
invariant test, parent test and automorphism test, respectively. Only structures
that pass every test are printed.

Since S is finite, also R is finite. Thus the algorithm terminates after a finite
number of operations.

In the classifications considered in this work testing whether S is the smallest
element in its Aut(S′) orbit is achieved by precomputing Aut(S′) and testing
for each g ∈ Aut(S′) whether g ∗ S < S. It might be possible to devise a more
optimized test but this test works well enough in practice. Note that if S′ has
trivial automorphism group, S is always element in its Aut(S′)-orbit.

If S′ has many automorphisms,the test in line 8 may be rather inefficient. For
those cases the alternative algorithm Design-C2 can be used.

Let φ : S0 → {true, false} be any function. In practice φ(S′) should be True
when S′ has small enough automorphism group for calling Design-C1(S′) to
be more efficient than calling Design-C2(S′). Now the algorithm Design-
Classification classifies all designs of S.

Design-Classification

1 for each S′ ∈ S ′
0

2 if φ(S′)
3 then Design-C1(S′)
4 else Design-C2(S′)

Theorem 19. If S ′
0 is as described before and φ : S0 → {true, false} an

arbitrary function, calling Design-Classification outputs exactly one system
in each G-orbit of S .

Proof. We proceed by induction on the order of the structures. For the struc-

3.3. GENERATION BY CANONICAL AUGMENTATION 24

Design-C2(S′)
1 print S′

2 C ← ∅
3 for every S ∈ S such that (S′, S) ∈ R
4 do
5 if f(S′′) < f(S′) for some S′′ such that (S′′, S) ∈ R
6 then reject S
7 if S′ is not in the Aut(S)-orbit of m(S′)
8 then reject S
9 if τ(S) ∗ S ∈ C

10 then reject S
11 if S has not been rejected
12 then
13 C ← C ∪ {τ(S) ∗ S}
14 Design-C2(S)

tures of order 0, i. e., seeds, the claim holds. Now assume that the claim holds
for structures of orders at most n.

First note that testing whether f(S′′) < f(S′) for some S′′ is redundant, since
if S is rejected in that test, by requirement (R5) and (R6) S′ is not in the
Aut(S)-orbit of m(S) which will lead to rejection of S later on.

First we show that the algorithm does not output isomorphic systems. To arrive
at a contradiction, assume that two isomorphic systems S and S′ of order n+1
are output. Now, by (R4) m(S) and m(S′) are isomorphic systems of order n.
By the induction hypothesis there is a unique L ∈ S that is isomorphic to both
of them and accepted by the algorithm. Thus both S and S′ are generated by
a call Design-C1(L) or Design-C2(L).

Consider the case that both were generated by Design-C1. Let g be as in
(R4). Since both S and S′ are accepted, there are h ∈ Aut(S), h′ ∈ Aut(S′)
such that L = h ∗m(S), L = h′ ∗m(S′). Now hgh′−1 maps S′ to S and L to
itself. Thus both S and S′ are in the same Aut(L)-orbit and only the smaller
of them is accepted, a contradiction.

Now let us consider the case that both S and S′ were generated by Design-C2.
In this case we have τ(S) ∗ S = τ(S′) ∗ S′. Thus, after S is output, C contains
τ(S) ∗ S and S′ will be rejected. A contradiction again.

We still need to show that for an arbitrary S ∈ S of order n + 1 some system
isomorphic to S will be output. Let L be the unique accepted element of Sn

isomorphic to m(S), L = g ∗m(S). Let h ∈ Aut(L) be such that S′ := hg ∗ S
is minimal. By (R2) and (R3), (L, S′) ∈ R.

Since S and S′ are isomorphic, there is a k such that m(S′) = k ∗m(S) and

3.4. EFFICIENCY CONSIDERATIONS 25

S′ = k ∗ S. Thus hgk−1 ∈ Aut(S′) maps m(S′) to L, and L is in the Aut(S′)
orbit of m(S′).

By definition S′ is smallest element in its Aut(L) orbit; thus Design-C1(L)
accepts S′. However Design-C2(L) may reject S′ if C contains τ(S′) ∗ S′, but
in that case some system isomorphic to S′ has already been accepted.

3.4 Efficiency Considerations

The more often equality does not hold in (R6), the more useful the invariant is.
At the extreme, equality holds only if S′ and m(S) are in the same Aut(S)-orbit,
in which case the invariant uniquely determines the canonical substructure.
However, such an invariant can rarely be efficiently computed, and the choice
of a good invariant is a trade-off between usefulness and efficiency.

In the STS and SQS classifications the classification of the seeds was much
easier task than the classification proper. In general the classification of the
seeds is a separate task whose difficulty is not discussed here.

There are two natural requirements that the algorithm should satisfy to be effi-
cient: it should not consider too many elements of S and the basic operations
should be efficient.

Efficiency of computing canonical labellings is considered in Section 4.2. The
time required for deciding whether S is the smallest element in its Aut(S′)-
orbit depends on the order of the group Aut(S′). Computing any reasonable
invariant is clearly faster than computing canonical labelling. With the use of
invariants more demanding tests are often avoided.

The more structures the algorithm considers, the more time it requires. Some
of those structures are rejected and some are not. For all sound classification
algorithms an equal number of structures pass all tests and are output. However
the number of rejected structures may vary, and should be small.

For the number of structures that the algorithm studies to be small, the car-
dinality of S ′

0 should not be very large, its elements should not have auto-
morphism groups of large orders, and on average S ∈ S should have few
nonisomorphic structures S′ for which (S′, S) ∈ R.

Since the main loop of the algorithm studies each element of S ′
0, the fewer

elements there are in S ′
0, the better.

Assume that S ∈ S ′
0 and g ∈ Aut(S). Now if S′ ∈ S is generated by extending

S, so is g ∗ S. Of course it is possible that S = g ∗ S, but complete structures
tend to have fewer automorphisms than seeds. Clearly S ∼= g ∗S. Thus the au-
tomorphisms of S lead to generation of redundant structures and it is desirable
that S has few automorphism. The same conclusion can be drawn by studying

3.5. CLASSIFICATION OF STEINER TRIPLE SYSTEMS 26

line 8 of the algorithm Design-C1. Also automorphisms of S do not only lead
to redundant structures, they also slow down the execution of that line.

Since the classifications may be computationally very intensive, the algorithm
should be parallelizable. Unlike some simpler and more intuitive algorithms,
generation by canonical augmentation is easily parallelizable. Each seed can
be considered independently whereas other algorithms may have a global vari-
able similar to C in Design-C2. Also there is no need to store the accepted
structures, whose number may be too large for storing them all to be feasible.

When possible, the larger the order of the automorphism group of S is, the larger
f(S) should be. This way the invariant is specially efficient when S has many
automorphisms and hence most likely many extensions. Equivalently it implies
that structures are accepted when constructed by extending a substructure with
minimal number of automorphisms.

3.5 Classification of Steiner Triple Systems

The framework given in Section 3.3 is so general that there are several possible
classification algorithms for STS(v) based on it, some more efficient than others.
Here the algorithm used by Kaski and Österg̊ard [14] for v = 19 is described.

The set S consists of merely two parts, the STS(19) and the seeds, where a
seed is a substructure of STS(19) consisting of a block and all other blocks
intersecting it. The extension relation is defined so that (S′, S) ∈ R if S′ is a
proper substructure of S. This choice leads to a classification algorithm consist-
ing of two parts—extending the designs into STS(19) and rejecting isomorphic
designs—instead of several interleaving stages of extension and isomorph rejec-
tion.

Alternatively the seeds could be the derived designs of STS(19). Each derived
design consists of 18 points and 9 blocks such that each point occurs in exactly
one block. It is not hard to see that this kind of structure has automorphism
group order 9! · 29 = 185,794,560. Thus derived designs are not suitable seeds
in this case.

The seeds actually used in the classification have less trivial structure, and it
is not easy to say how many automorphisms they have. It turns out that due
to their less trivial structure, they have less symmetry and are more suitable
for being seeds. However it is quite easy to see that each structure consists of
3(9− 1) + 1 = 25 blocks since the replicate number for STS(19) is 9. There are
14, 648 such nonisomorphic structures [14].

The function φ is quite simply True for a seed S if the automorphism group
of S has order at most 200 and false otherwise.

The canonical substructure function m is defined based on the canonical la-

3.6. CLASSIFICATION OF STEINER QUADRUPLE SYSTEMS27

belling by m(S) = τ−1
B (S) ∗B u(τB(S) ∗B S). Here u maps S to its substructure

consisting of block b, all blocks intersecting b and all points, where b is the
smallest block (according to the standard order of N). Since u(S) does not
depend on the labelling of the points, it suffices to use canonical labelling of
blocks instead of a canonical labelling.

Assume that (S′, S) ∈ R for a seed S′ and an STS S. Furthermore, let b′ be
the block of S′ intersecting all other blocks and b the block that τB(S) maps to
the smallest block of τB(S) ∗ S. Now S′ is in the Aut(S)-orbit of m(S) if and
only if the blocks b′ and b are in the same Aut(S)-orbit.

An invariant function based on counting the number of Pasch configurations
was employed.

3.6 Classification of Steiner Quadruple Systems

Also the classification of SQS(v) can be accomplished with several different
algorithms based on the framework of Section 3.3. Here the algorithm that we
used for the classification of SQS(16) is described.

As in Section 3.5, the set S consists of two parts, which are in this case the
SQS(16) and their derived designs, i. e., STS(15).

The canonical substructure function is m(S) = τ−1
P (S) ∗P u(τP (S) ∗P S), where

u(S) is the derived systems of S associated with smallest point. Since u does
not depend on the labelling of blocks, point canonical labelling can be used.

In the SQS(16) classification the seeds are the 80 nonisomorphic STS(15), which
have been classified almost a century ago [36]. Each STS(15) consists of 15
points and 35 blocks, and most have an automorphism group of small order
[26]. Choosing seeds as in STS classification would lead to seeds consisting of
16 points and 101 blocks, and classifying the seeds would be quite a challenge.

Let us number the 80 isomorphism classes of STS(15) such that the larger
the order of the automorphism group of an STS(15), the greater number its
isomorphism class has. The invariant function f assigns to an STS(15) the
number of its automorphism group. In this way the invariant is most effective
for seeds with large automorphism group. Especially there is one STS(15) with
automorphism group order almost 100 times greater than automorphism group
order of any other STS(15) [26], and almost all extensions of that STS were
rejected by the invariant test; only homogeneous extensions pass that test.
Since on average the other STSs of order 15 have small automorphism group
order, it was not worth the trouble to implement Design-C2, and the function
φ was chosen to be identically True.

In practice the invariant was computed by counting for each point the number
of Pasch configurations it occurs in.

3.6. CLASSIFICATION OF STEINER QUADRUPLE SYSTEMS28

As noted in Section 3.4, it is desirable that structures of S have few seeds
from which they can be constructed. When the seeds are as in Section 3.5, the
number of seeds from which a complete structure can be constructed is equal
to the number of blocks, whereas if seeds are the derived designs, the number
of seeds from which a structure can be constructed is equal to the number of
points. Since all t-designs with t ≥ 2 and v > k have at least as many blocks
as they have points, it seems that seeds chosen as in Section 3.6 are in general
more suitable.

The classification algorithm was implemented as two separate programs: one
that finds all extensions of the seeds and another one that performs the isomorph
rejection. To further parallelize the algorithms, the task of extending a seed
was divided into 315 subtasks, each of which consisted of traversing one branch
of the search tree of the exact cover algorithm introduced in Section 4.1.

Dividing the classification software into two parts had some advantages as well
as disadvantages. The first program generated huge amounts of data, copying
and recording of which was troublesome. There would have been significantly
less data to store if only the structures that passed isomorph rejection had been
recorded.

However storing all the data may be very useful. For example if the isomorph
rejection software has a bug and produces erroneous results, the software need
to be fixed and rerun. If all extensions have been saved, only the isomorph
rejection need to be rerun, and a lot of time is saved.

Sections 4.4 and 4.5 consider computing the canonical labelling in the SQS(16)
classification.

Chapter 4

Auxiliary Algorithms

In this section the tasks of extending partial designs and computing canonical
labellings are discussed in more detail.

4.1 Exact Cover Search

Some efficient algorithm is needed for the task of finding for given S ∈ Sn

every S′ ∈ Sn+1 such that (S, S′) ∈ R. In fact this part of the classification of
SQS(16) required significantly more time than the isomorph rejection. It seems
that this part is more demanding also from computational complexity point of
view, and there are more sophisticated algorithms for isomorph rejection.

When dealing with Steiner systems, the task of finding such completions can
be formulated as an exact cover problem.

Problem 1 (Exact cover). The problem instance consists of a set T and a
set S that is a collection of subsets of T . A solution is a subset of S in which
each t ∈ T occurs exactly once.

Now consider the task of completing an S ∈ S0 to an S(t, k, v) design. In other
words, the task is to find a set of blocks that covers each t-subset left uncovered
by the blocks of S. Thus every extension corresponds to an exact cover and
vice versa.

To study the complexity of the exact cover problem we list several variants of
it.

Problem 2 (Exact cover(D)). Given an instance of the exact cover problem,
determine whether a solution exists or not.

Problem 3 (#Exact cover). Given an instance of the exact cover problem,
determine the number of solutions it has.

4.1. EXACT COVER SEARCH 30

Problem 4 (Exact covers). Given an instance of the exact cover problem,
output all of its solutions.

It is easy to see that Problems 2–4 are in ascending order by difficulty, that
is, as a by-product of solving any of the problems we get the answer to the
previous ones. Also solving Problem 1 gives solution of Problem 2. The most
difficult one, Problem 4, is the one that needs to be solved in the classification
of SQS(16).

It is well known that Exact cover(D) is NP-complete [32, p. 201]. Thus it is
unlikely that an efficient algorithm exists for solving Exact cover. However
#Exact cover is a #P-complete problem, thus most likely even harder than
Exact cover(D).

Theorem 20. Exact cover(D) is NP-complete and #Exact cover is #P-
complete.

Proof. Both claims are proved by a parsimonious reduction of 3SAT to Exact
cover (see Appendix B for relevant definitions).

Consider an instance of 3SAT with variables x1, . . . , xn and clauses α1, . . . ,
αm. Define an occurrences of a literal y as pairs (y, i) such that y occurs in the
clause αi.

Let T and S have the same meaning as in the definition of Problem 1. The set
T consists of the integers 1, . . . , n, the clauses α1, . . . , αm, and all occurrences
of the literals.

The set S consists of subsets of T constructed as follows. For each integer
1 ≤ i ≤ n form a set Fi consisting of i and all occurrences of xi, and a set Ti

consisting of i and all occurrences of ¬xi. For every clause αk = (y1 ∧ y2 ∧ y3)
form all subsets of {αk, (y1, k), (y2, k), (y3, k)} that contain the clause and at
least one occurrence of some literal. (The reduction works only for 3SAT since
the number of subsets generated is exponential in the size of the clause).

If the 3SAT instance is satisfied when xi = True for i ∈ A and xi = False
for i 6∈ A, the corresponding Exact Cover problem has a solution consisting
of sets Ti such that i ∈ A, Fi such that i 6∈ A, and maximal sets covering
all clauses and the uncovered occurrences of literals. Conversely every exact
cover is of this form and corresponds to a unique truth assignment satisfying
the original clauses.

It is not hard to see that space requirement of the transformation is logarithmic
in the number of clauses.

The more widely known proof for NP-completeness of Exact cover relies on
a reduction producing Exact cover instances where each subset consists of
exactly 3 elements. That proof shows that also the special case Exact Cover

4.2. THE ISOMORPHISM PROBLEM 31

by 3-sets is NP-complete. However the reduction used in that proof is not
parsimonious, and it is not known by the author whether Exact Cover by
3-sets is #P-complete.

The results above state that #Exact cover is #P-complete, not that the
special cases induced by Steiner systems are. However Colbourn has proved that
also the special case induced by partial Steiner triple systems is NP-complete
[5]. It is not known by the author whether similar results hold for other Steiner
system or concerning the #P-completeness of extending Steiner (triple) systems.

The best known algorithm for solving the exact cover problem is a simple back-
tracking search given below. Efficiency of the algorithm can be increased by a
clever choice of data structures suggested by Knuth [19].

Exact-S(T, S, C)
1 Choose any t ∈ T
2 for each s ∈ S such that t ∈ s
3 do
4 C ′ ← C ∪ {s}
5 T ′ ← T \ s
6 S′ ← {r ∈ S | r ∩ s = ∅}
7 if T ′ = ∅
8 then print C ′

9 else Exact-S(T ′, S′, C ′)

Exact-Search(T, S)
Exact-S(T, S, ∅)

The choice of t in line 1 should be made with some heuristic to further increase
efficiency of the algorithm. Choosing t that occurs in least number of sets of S
is simple but effective. More complicated methods usually use more time than
they save.

4.2 The Isomorphism Problem

Virtually any kind of discrete structures can be represented as partitioned
graphs (see Section 4.3). Especially deciding isomorphism of other structures
can be reduced to deciding the isomorphism of graphs. Also plain graph would
suffice, but are rarely as practical.

Since the problem of deciding graph isomorphism has been widely studied, from
a theoretical as well as a practical point of view, it makes sense to use reduction
to graph isomorphism in practice, as is done in this work. However, insight into
the original structures may be useful for developing invariants that speed up

4.2. THE ISOMORPHISM PROBLEM 32

isomorphism computations, see Section 4.3. The nauty software package (see
Section 4.4) was used for computing canonical labellings. It also computes
generators and the order of the automorphism group.

Problem 5 (Graph isomorphism). Given two graphs G and G′, determine
whether they are isomorphic or not.

Deciding isomorphism of partitioned graphs can be reduced to deciding iso-
morphism of graphs, and deciding isomorphism of graphs is a special case of
deciding isomorphism of partitioned graphs. Thus there is no significant dif-
ference between complexity deciding isomorphism of graphs and complexity of
deciding isomorphism of partitioned graphs.

Computing automorphisms and isomorphisms are closely related tasks for graphs
as well as partitioned graphs;

Clearly Graph isomorphism is in NP. It is not known to be in P, although
much effort has been used for finding efficient algorithms. In a theoretical sense
(asymptotic worst case time) probably the best known algorithm for Graph
isomorphism is computing canonical labellings by combining techniques due to
Zemlyachenko and Luks [1]; this way isomorphism can be decided in modestly
exponential time exp(

√
v +o(1)), where v is the number of vertices. For several

special cases there exist more efficient algorithms. For example, isomorphism
of graphs with bounded vertex degree can be decided in polynomial time [1].

It is not known whether Graph isomorphism is NP-complete, but there are
results suggesting it is not. The counting problem #Graph isomorphism
is polynomially reducible to the corresponding decision problem [24], but for
known NP-complete problems the corresponding counting problem seems to be
harder. Also if Graph isomorphism is NP-complete, the polynomial hierarchy
collapses to the second level [4], which is considered unlikely.

Accordingly it seems that Graph isomorphism is neither in P nor NP-complete.
Indeed, unless P = NP, NP contains problems that are neither in P nor NP-
complete [32, Theorem 14.1].

In this work the task of computing canonical labellings of Steiner systems is re-
duced to computing canonical labellings of partitioned graphs. There are some
requirements for the graph representation. It should be isomorphism preserv-
ing, that is, two graphs should be isomorphic if and only if the corresponding
Steiner systems are isomorphic. Canonical labelling of a Steiner system should
be possible to obtain from the canonical labelling of the corresponding graph.
It is also desirable that the representation be automorphism preserving, that is,
a Steiner system and the corresponding graph should have isomorphic automor-
phism groups. Also there are more practical requirements: it should be possible
to transform Steiner systems to graphs and processing the graphs efficiently.

4.3. PARTITIONED GRAPHS 33

4.3 Partitioned Graphs

Assume that there is a set Ṽ such that the vertex set of each graph is a subset
of Ṽ . The set Ṽ should be well-ordered, that is, there should be a total order
≺ on Ṽ such that each nonempty subset of Ṽ has a smallest element. In the
classification software we let Ṽ = N.

Only finite graphs are needed in the classification, and in the following defini-
tions it is assumed that the graphs are finite. To some extent the definitions
and results could be generalized for infinite graphs. Especially Definition 26 is
directly applicable to infinite graphs.

Definition 24. A partitioned or ordered graph is a triple (V,E, Γ) such that
(V,E) is a graph and Γ = (V1, V2, . . . , Vn) is an ordered partition of the vertex
set V . The subsets Vi are called cells of the partition.

An unlabelled graph (V,E) can be considered as a partitioned graph with the
partition Γ = (V). At the other extreme we have graphs with discrete partition,
i. e., partition that consists of cells of cardinality one.

Sometimes partitioned graphs are called colored graphs in which case the cells
are color classes. However, the most common meaning of coloring of a graph
involves additional restrictions totally unrelated to the isomorphism properties
considered here.

Definition 25. Assume that Γ is a partition of a finite set V ⊆ Ṽ . The
canonical partition c(Γ) is the partition c(Γ) = γ ∗ Γ = (W1, . . . ,Wn), where
γ ∈ SN is chosen so that γ ∗ V consists of the |V | smallest elements of Ṽ , and
in addition v1 ∈Wi, v2 ∈Wj and i < j imply that v1 < v2.

It is not hard to see that the canonical partition exists and is unique for any
V , but the permutation γ need not be unique. Note that the partitions Γ and
g ∗ Γ, g ∈ SṼ , have the same canonical partition.

Definition 26. Let G = (V,E, Γ) and G′ = (V ′, E′,Γ′) be two partitioned
graphs, Γ = (V1, . . . , Vn), Γ′ = (V ′

1 , . . . , V
′
n). An isomorphism from G to G′ is a

bijection f : V → V ′ that maps E onto E′, and furthermore satisfies f(Vi) = V ′
i

for 1 ≤ i ≤ n. If an isomorphism from G to G′ exists, we say that G and G′

are isomorphic.

Since we assume that V, V ′ ⊆ Ṽ , the graphs G and G′ are isomorphic if and
only if g ∗G = G′ for some g ∈ SṼ .

Broadly speaking an invariant is some property of a graph that does not de-
pend on the labelling of the vertices. It seems there is no consensus on exact
definitions, e. g., [14] and [28] define vertex invariant differently. The latter def-
inition is used in this work. The usefulness of invariants is briefly discussed in
Section 4.4.

4.4. NAUTY 34

Definition 27. Let G be a set of partitioned graphs closed under the action of
SṼ . A vertex invariant is a mapping φ : G × Ṽ → Z such that if γ ∈ SṼ , then
φ(G, v) = φ(γ ∗G, γ ∗ v).

A vertex invariant assigns a value to a vertex of a graph. Similarly a graph
invariant assigns a value to a graph, but this time the set of possible values is
different.

Definition 28. Let G be as in Definition 27. A graph invariant Λ assigns to
each graph G = (V,E, Γ) ∈ G an ordered partition Λ(G) of the set V such that
Λ(γ ∗ G) = γ ∗ Λ(G) for every γ ∈ SṼ . It is also required that Λ(G) is finer
than Γ, i. e., every cell of Λ(G) is a subset of some cell of Γ.

The mapping Λ(G) = Γ is a trivial invariant as is any permutation of the cells.

Definition 29. A graph invariant Λ is order preserving if, for any graph G =
(V,E, Γ) ∈ G , Γ = (V1, . . . , Vn), the partition Λ(G) = (W1, . . . ,Wm) satisfies
the following condition: Wk ⊆ Vi, Wl ⊆ Vj and i < j imply k < l.

Informally an order preserving invariant splits the cells into smaller ones, but
does not change their order.

Every vertex invariant φ defines a derived graph invariant Λφ such that for
G = (V,E, Γ) ∈ G and Γ = (V1, . . . , Vn), Λφ(G) has cells of form Wi,j =
{v ∈ Vi | φ(G, v) = j}. The partition Λφ(G) consists of all non-empty sets
of this form ordered lexicographically by the pairs (i, j). Since φ is a vertex
invariant, Λφ is a graph invariant. It is also easy to see that Λφ is order-
preserving.

One can also derive a vertex invariant from a graph invariant. However, in
practice graph invariants are often best described by giving the corresponding
vertex invariant, and are computed by computing the vertex invariant, see for
example the list of invariants in [28]. When dealing with graph representations
of combinatorial designs, one may develop invariants for the graphs based on in-
variants of the designs. For example in the SQS classification a vertex invariant
based on the isomorphism classes of derived designs was employed.

4.4 nauty

nauty is a graph canonical labelling software by Brendan McKay [27, 28].

Definition 30. A canonical labelling of partitioned graphs is a function that
maps a graph G = (V,E, Γ) to σG ∈ SṼ such that

σG ∗ Γ = c(Γ), (4.4.1)

and for each µ ∈ SṼ
σG ∗G = σµ∗G ∗ (µ ∗G). (4.4.2)

4.4. NAUTY 35

Equation (4.4.1) is somewhat unnecessary since the equation (4.4.2) guaran-
tees that the canonical labelling solves the isomorphism problem and satisfies
Definition 22. However, equation (4.4.1) is quite useful in practice.

In addition to computing the canonical labelling of a graph, nauty also computes
generators of its automorphism group and the order of the automorphism group.

The following theorem shows how to obtain a canonical labelling with the use
of an invariant, and Theorem 22 shows that the use of an invariant does not
interfere with nauty ’s automorphism computation. Theorem 22 and the part
of Theorem 21 stating that the new mapping satisfies (4.4.2) are proved in [14].

Theorem 21. Assume that Λ is an order preserving vertex invariant, ∆ is the
mapping (V,E, Γ) = G 7→ ∆(G) = (V,E, Λ(G)) and that G 7→ σG is a canonical
labelling of graphs. Then the mapping G 7→ σ∆(G) is also a canonical labelling.
If Λ is not order preserving, (4.4.2) will still hold for σ∆(G).

Proof. Assume that G = (V,E, Γ), Γ = (V1, . . . , Vn), Λ(G) = (W1, . . . ,Wm).
Since G is fixed, we may denote σ∆(G) briefly by σ.

It is easy to see that σ ∗ V consists of the |V | smallest elements of Ṽ . To prove
that σ∗Γ = c(Γ), we still need to show that for arbitrary v1 ∈ σ∗Vi, v2 ∈ σ∗Vj ,
i < j, we have v1 ≺ v2.

Define v′m = σ−1 ∗ vm for m = 1, 2. Now v′1 ∈ Vi and v′2 ∈ Vj . Since Λ(G) is
a finer partition than Γ, it contains cells Wl and Wk such that v′1 ∈ Wl ⊆ Vi,
v′2 ∈ Wk ⊆ Vj . Since Λ is order preserving, l < k. Now σ ∗ Λ(G) = c(Λ(G)) by
the definition of σ, which implies σ ∗ v′1 ≺ σ ∗ v′2 by the definition of canonical
partition.

To finish the proof, note that σ∆(µ∗G)(µ ∗ G) = σµ∗∆(G)(µ ∗ G) = σ∆(G) ∗ G
where the first equation follows the fact that Λ is a graph invariant and second
from the fact that the mapping G 7→ σG is a canonical labelling.

Theorem 22. Assume that Λ is a graph invariant and ∆ is the mapping
(V,E, Γ) = G 7→ ∆(G) = (V,E, Λ(G)). For an arbitrary graph G, Aut(G)
= Aut(∆(G)).

Proof. If γ ∈ Aut(∆(G)), γ is an automorphism of G since Λ(G) is finer than
Γ.

If γ ∈ Aut(G), γ ∗ Λ(G) = Λ(γ ∗ G) = Λ(G) by the definition of an invariant.
Thus γ ∈ Aut(∆(G)).

The algorithm used by nauty works by searching for a suitable discrete partition
of the vertex set by considering different ways of refining the original partition.
The finer the original partition is, the less refinement is needed and the easier

4.5. POINT-BLOCK GRAPH 36

the task is. However, the difficulty of the computation depends also on several
other factors.

A canonical labelling of graphs can be used in the implementation of the gen-
eration by canonical augmentation as follows. Let S be the set of relevant
combinatorial structures and G the set of their graph representations. Assume
that a group H acts on both S and G such that the orbits of the action are
the isomorphism classes.

Let g : S → G be the function that maps each structure to its graph represen-
tation. The function g should fulfill the following requirements. The structures
S1 and S2 are isomorphic if and only if g(S1) and g(S2) are. Furthermore if
g(S) = G = (V,E, Γ), where Γ = (V1, . . . , Vn), each vertex v ∈ V1 corresponds
to a substructure S′ of S such that (S′, S) ∈ R, and this correspondence is bijec-
tive. Let h be a function that carries this correspondence, that is, h(v,G) = S′

when v, G and S′ are as above. Both g and h should be invariant in the sense
that h(γ ∗ v, γ ∗G) = γ ∗ h(v,G) and g(γ ∗ S) = γ ∗ g(S) and γ ∈ H.

Let f be the invariant function needed for the generation by canonical augmen-
tation. Now we can define a vertex invariant φ by φ(v,G) = f(h(v,G)) when v
is in the first cell of the partition of G, and φ(v,G) = 0 otherwise. It is possible
to define φ less trivially for vertices not included in the first cell, but there is no
general way to it. Let Λφ be the graph invariant based on the vertex invariant
φ, and ∆ be the function G = (V,E, Γ) 7→ ∆(G) = (V,E, Λφ(G)). Now the
canonical substructure function can be defined as m(S) = h(v′, g(S)) where the
vertex v′ is chosen so that σ∆(g(S)) ∗ v′ is minimal.

Assume that m(S) = G = (V,E, Γ), Γ = (V1, . . . , Vn), and furthermore that
Λφ(m(S)) = (W1, . . . ,Wn). By the definition of Λφ, W1 consists of vertices
v ∈ V1 such that φ(v,G) is minimal. Since σ∆(G) ∗ Λφ(G) = c(Λφ(G)), we
have v′ ∈ W1 ⊆ V1, and consequently h(v′, G) is defined. In addition by the
definition of φ we have f(m(S)) ≤ S′ for all S′ such that (S′, S) ∈ R.

If σG ∈ H for every G, and g is injective, then canonical labelling of the
incidence structures can be defined as τ(S) = σg(S). To show that τ indeed is
a canonical labelling, assume that S′ = γ ∗ S. Now g(τ(S′) ∗ S′) = g(σg(γ∗S) ∗
γ ∗ S) = σg(γ∗S) ∗ γ ∗ g(S) = σγ∗g(S) ∗ γ ∗ g(S) = σg(S) ∗ g(S) = g(σg(S) ∗ S) =
g(τ(S) ∗ S), which implies τ(S′) ∗ S′ = τ(S) ∗ S since g is injective. In this
case the definition of m given above is of the form m(S) = τ(S)−1 ∗u(τ(S) ∗S)
discussed in Section 3.3. This is the case in the SQS classification.

4.5 Point-Block Graph

Perhaps the most straightforward graph representation for an incidence struc-
ture (P,B, I) is the graph with vertex set V = P ∪ B, edge set E = I and
partition Γ = (P,B). We will call this graph the point-block graph of the inci-

4.6. PAIR GRAPH 37

dence structure. It is rather easy to see that this representation is isomorphism
preserving as well as automorphism preserving, and a canonical labelling of
the incidence structure can be obtained in a straightforward fashion from a
canonical labelling of its point-block graph.

Point-block graphs are probably the simplest and oldest graph representation
of incidence structures, but unfortunately they present difficulties for many
graph isomorphism programs including nauty [27]. Accordingly also other graph
representations are considered and used in other classifications.

This graph representation and the construction at the end of Section 4.4 was
used in the classification of the SQS(16) for computing canonical labellings.
The function h maps a vertex to the derived designs associated with the point
corresponding to the vertex, and the function f is, as described in Section 3.6,
a function that assigns to a point the number of the isomorphism class of
the derived design associated with the point. In practice the invariant can be
computed from the Steiner system, not from its graph representation. This
construction, especially the canonical substructure function obtained in this
way is equal to the one described in Section 3.6.

4.6 Pair Graph

Pair graphs were not employed in any classification, but they are described here
to demonstrate some techniques used with graph representation for proving the
isomorphism and automorphism preservation of such representations.

Let (P,B) be an SQS(v). Its pair graph has as vertices the 2-subsets of P. Two
vertices are adjacent if there is a block containing both vertices as subsets.

Lemma 23. If K is a clique in the pair graph such that no point occurs in all
of its vertices, then K consists of at most max(v/2, 6) vertices.

Proof. To prove the lemma a somewhat tedious study of several different cases
is needed. First assume that every two pairs in K intersect. In this case K has
to be {{p, q}, {p, r}, {q, r}} for some p, q, r, and |K| = 3.

Now assume that there are two pairs that do not intersect. Let those pairs be
{p, q} and {r, s}. Since those pairs occur in same block, the SQS must contain
the block B = {p, q, r, s}.

It is impossible for K to contain a pair with one element included in B and
another one not, for if there were such a pair, say {p, t}, there had to be block
{p, t, r, s}, a contradiction.

Assume that K contains a third pair included in B, say {p, r}, and a pair that
is not included in B, say {t, v}. Hence the SQS contains blocks {p, q, t, v} and
{p, r, t, v}, a contradiction. Thus either K contains only two subsets of B or K

4.6. PAIR GRAPH 38

consists entirely of subsets of B. In latter case K consist of at most
(
4
2

)
= 6

vertices.

In the former case there is a pair {v, w} not included in B. Thus no point of
P \B may occur in more than one pair of K, for if there were pairs {v, w} and
{v, y}, there had to be blocks {v, w, r, s} and {v, y, r, s}, a contradiction. Since
no two pairs of K have a point in common, there are at most v/2 pairs.

Theorem 24. An SQS(v) can be constructed (up to isomorphism) from its pair
graph.

Proof. If the pair graph consists of only six vertices, then v = 4 and the SQS
consists of only one block. Otherwise v ≥ 8 and the following algorithm recon-
structs the SQS:

Assume that p ∈ P. The set Kp := {{p, q} | q ∈ P, q 6= p} is a clique of the
pair graph since for all q1, q2 there is a block which contains {p, q1, q2}. Since
there are v − 1 possible values for q, the clique consists of v − 1 vertices.

According to Lemma 23 all cliques of size v − 1 are of form Kp for some p.
Assign a label to each such clique. Each vertex occurs in exactly two such
cliques. Assign the label {p, r} to a vertex occurring in cliques p and r. If two
vertices {p, r} and {t, s} are neighbors, add {p, r, t, s} to the block set unless it
is already included in it.

Note that we do not use the algorithm presented in Theorem 24 as a computa-
tional method. We consider it as a theoretical result needed to establish that
nonisomorphic SQSs cannot have isomorphic pair graphs. Yet we still need a
stronger reconstructability result.

Theorem 25. For v ≥ 8 the automorphism groups of an SQS(v) and its pair
graph are isomorphic.

Proof. Let τ be an automorphism of an SQS(v). If its action of the pair graph
is defined on natural way, τ ∗ {p, v} := {τ ∗ p, τ ∗ v}, it is also an automorphism
of the pair graph.

Let µ be an automorphism of the pair graph. Since µ maps cliques to cliques,
for each p ∈ P there is q ∈ P such that µ ∗Kp = Kq. If we define µ ∗ p := q,
then µ is an automorphism of the SQS.

Experiments established that computing canonical labellings of point-block
graphs of SQS(16) with nauty was slow when no invariants were used, whereas
computing canonical labellings of pair graphs was rather quick. However, since
the use of invariants significantly reduced the running time of computing canon-
ical labellings of point-blocks graphs, there was no need to use the less practical
pair graph representation.

4.7. BLOCK GRAPH 39

Obtaining a canonical labelling of an SQS from a canonical labelling of the pair
graph is possible but somewhat tedious. However, canonical labellings of pair
graphs could be used for isomorph rejection even without using it for computing
canonical labellings of SQSs. The definition of the canonical substructure func-
tion m could be based on the canonical labelling of the pair graph instead of the
canonical labelling of the incidence structure. Also the algorithm Design-C2
could store the canonical labellings of the pair graphs instead of the canonical
labellings of the incidence structures.

4.7 Block Graph

The block graph Gi of a Steiner system S(t, k, v) (P,B) is the graph with vertex
set B and edge set E = {(B1, B2) | |B1∩B2| = i}. Kaski and Österg̊ard [14] used
block graphs with i = 1 for representing STS(19). Results similar to Lemma
23 and Theorems 24 and 25 can be found in [14] and [33]. Since vertices of G1

correspond to blocks of the STS, the canonical labelling of a block graph gives
the block canonical labelling of the corresponding STS, which was employed in
the classification of the STS(19).

Chapter 5

Results

5.1 Miscellaneous results

Running the SQS(16) classification required approximately twelve years of CPU
time, of which less than a day was used for the isomorph rejection and the rest
for the exact cover search. The search was distributed using the batch system
autoson [29]. A total of 107 computers, almost all with 2.2 or 2.4 GHz Intel
CPUs, were at some point running the search.

There are 1,054,163 nonisomorphic SQS(16). The total number of labelled
SQS(16) is 14,311,959,985,625,702,400; this number was computed with formu-
las given in Section 5.3.

De Vries has established [35] that 69 of the 80 STS(15) are derived systems of a
homogeneous SQS. The classification results imply that none of the remaining
11 STS(15) is.

For each BSQS(16) it was determined whether its lower chromatic number is 2
or 3. This was achieved by simple exhaustive search among the 216 possible 2-
colorings. Total 349, 058 nonisomorphic SQS(16) have lower chromatic number
χ = 2.

The SQS(16) with rank at most 14 have been classified by Zinoviev and Zinoviev
[39, 41, 43]. Their results agree with results obtained in this work and given in
Table 5.4.

In Table 5.2 the standard numbering of STS given in [25] is used instead of the
numbering used in classification.

A slight majority of the nonisomorphic systems have nontrivial automorphisms,
but relatively few have more than 4 automorphisms.

5.1. MISCELLANEOUS RESULTS 41

Table 5.1: Nonisomorphic SQS(16) having given β (see Definition 11)

β # β #
1 1, 641 9 128, 416
2 12, 338 10 101, 257
3 34, 934 11 72, 842
4 72, 907 12 42, 672
5 106, 084 13 18, 807
6 143, 248 14 5, 667
7 161, 399 15 1, 115
8 150, 717 16 119

Table 5.2: Number of SQS having given STS(15) as derived system

No # No # No # No #
1 13, 711 21 47, 125 41 5, 780 61 14, 179
2 240, 118 22 49, 243 42 105 62 2, 606
3 213, 133 23 157, 868 43 275 63 5, 503
4 759, 223 24 134, 657 44 671 64 3, 478
5 410, 563 25 166, 233 45 1, 068 65 183
6 257, 899 26 196, 444 46 363 66 187
7 43, 092 27 75, 791 47 4, 738 67 108
8 699, 707 28 73, 897 48 542 68 161
9 725, 288 29 63, 255 49 344 69 241

10 742, 266 30 22, 692 50 343 70 4, 800
11 294, 132 31 57, 948 51 597 71 168
12 324, 812 32 37, 117 52 1, 020 72 131
13 389, 642 33 26, 625 53 6, 059 73 40
14 301, 162 34 29, 240 54 5, 130 74 310
15 431, 065 35 2, 959 55 1, 163 75 452
16 77, 610 36 1, 817 56 482 76 3, 307
17 143, 673 37 35 57 360 77 34
18 427, 530 38 742 58 5, 786 78 52
19 57, 425 39 6, 252 59 5, 513 79 5
20 186, 917 40 6, 562 60 523 80 5

5.1. MISCELLANEOUS RESULTS 42

Table 5.3: Nonisomorphic SQS(16) having given automorphism group order

|Aut(X)| # |Aut(X)| # |Aut(X)| #
1 459,466 32 2,732 336 5
2 344,972 36 1 384 24
3 1,721 42 7 512 8
4 174,544 48 159 576 1
5 2 60 1 768 9
6 861 64 585 1,152 2
8 53,197 80 1 1,344 1
9 4 96 84 1,536 5

12 759 128 178 2,688 1
16 14,522 168 4 3,072 2
21 12 192 41 21,504 1
24 216 256 34 322,560 1

Table 5.4: Ranks of the SQS(16)

Rank #
11 1
12 15
13 4, 131
14 708, 103
15 341, 913

5.2. RESOLVABILITY 43

5.2 Resolvability

One of the interesting properties that can be studied when complete classifi-
cation is available is the resolvability of the designs. Typically the interesting
problem is whether resolvable designs of a certain kind exists. With SQS(16)
the situation is different: it is known that there exists resolvable SQS(16), but
the existence of nonresolvable SQS(16) has been an open question [39].

After classifying the SQS(16) we wish to determine the resolvability of each of
those. There are two well known algorithms for this task, both of which can be
formulated as exact cover problems.

One way of searching for resolutions is to choose a point p′ ∈ P and find all
blocks incident with p′. Label these blocks as Bi. Each parallel class contains
a unique Bi. Assign the label i to the parallel class containing Bi. Now the
task of completing the parallel classes can be formulated as an exact cover
problem: cover the pairs (p, i), p ∈ P , where p is not incident with Bi, and
the blocks B not incident with p′, with sets of the form Si,B = B ∪ {(p, i) |
p is incident with B}.

An alternative algorithm consists of two exact cover searches. In the first one
all ways to cover the point set with blocks are determined. In other words all
parallel classes are generated. When all parallel classes are known, one tries to
cover the block set with parallel classes, that is, form resolutions.

Both algorithms were implemented. Since the latter one was significantly faster,
resolvability of every SQS(16) was determined by it. It was established that
617,865 of the 1,054,163 SQS(16) are resolvable and the rest are not.

5.3 Reliability of the Results

Although the computation was not a proof of a theorem at least in the strictest
sense, some remarks about computer-based proofs apply to computations of
this sort as well.

Traditionally mathematical proofs have been written and verified by math-
ematicians, but during the 20th century also computers were used for both
tasks. Computers are naturally very useful when the necessary computations
or case by case analysis would require huge amounts of time by humans.

In such cases not only writing a proof but also verifying one is practically im-
possible without a computer. This leads to the question about the reliability of
computer generated proofs, which has been debated and remains controversial.
A more detailed discussion of the question is omitted. Instead some argument
for the correctness of the SQS(16) classification are presented.

The classification software consists of nauty, exact cover subroutines provided

5.3. RELIABILITY OF THE RESULTS 44

by Petteri Kaski [15] and some code specific to the SQS classification. Both
nauty and the exact cover subroutine have been successfully used in several
classifications and it is unlikely that either of them should contain undiscovered
bugs.

The classification software correctly classified SQS(14) obtaining N(14) = 4 in
accordance with previous results.

To provide further evidence on the correctness of the result a double-counting
consistency test was employed. This check is analogous to test employed in [14].
Let us now consider only SQS(16) with point set {1, 2, . . . , 16} represented as
set systems. Assume that, as a result of computation, we have obtained a set
S ′ containing one representative from each isomorphism class. According to
orbit-stabilizer (see Appendix A) theorem the total number of SQS(16) is∑

S∈S ′

16!
Aut(S)

. (5.3.1)

Assume that Si, i = 1, 2, . . . , 80 are the 80 nonisomorphic STS(15) and Mi is the
number of ways Si can be extended to an SQS(16). Again the orbit-stabilizer
theorem gives us a formula for the total number of SQS(16):

1
16

80∑
i=1

Mi
16!

Aut(Si)
. (5.3.2)

The division by 16 is necessary since each SQS(16) has 16 derived STS(15) and
can be generated by extending any of them.

To actually compute the sum (5.3.2), one needs only the number of exact covers
found during the classification whereas performing isomorph rejection is neces-
sary to obtain the values occurring in the sum (5.3.1). If there is an error in
the classification software, it is very unlikely that the classification would be
erroneous consistently enough for sums (5.3.1) and (5.3.2) to agree.

Chapter 6

Conclusions

In this thesis the Steiner quadruple systems of order 16 were successfully clas-
sified. This task was completed by applying the McKay framework [30] in a
similar way than it has been applied for classification of Steiner triple systems
[14]. The exact cover algorithm by Knuth [19] and the graph canonical labelling
software nauty by McKay [28] were used in implementation of the classification.

The fact that we have obtained yet another classification result with the tools
mentioned above provides additional proof for the power of the tools. However
the task was computationally very hard, and finding more efficient methods is
an interesting problem.

Since the exact cover search required most of the CPU time, optimizing the
search is naturally most obvious way to improve efficiency of the classification
method. In the classification described in this thesis the search tree had a huge
number of branches that had no leaves, and some way to prune these branches
could provide great improvement in efficiency.

The classification method by Zinoviev and Zinoviev provides an interesting
alternative. So far only systems with rank at most 14 have been classified with
it, but classification of systems with rank 15 is expected to be ready in near
future [43]. It is not at all apparent how the classification method for systems
with given rank can be applied in this case.

Although the running time required by the the algorithm by Zinoviev and
Zinoviev was not mentioned their papers, one would expect it to be significantly
less than with our method. However, the method applied in this thesis has
some advantages. The method is more general, although it is possible that the
method by Zinoviev and Zinoviev can be generalized. Also our method includes
some sort of verification of the results, which has proved itself indispensable in
practice.

When considering the computational difficult of classification, also some theo-
retical results are of interest. The exact complexity of several relevant problem

6.0. Conclusions 46

such as completing partial Steiner systems and computing canonical labellings
is not known. Furthermore it is not known what NP-completeness actually
means, or can NP-complete problems only be solved in exponential time.

Now that Steiner quadruple systems of order 16 have been classified, 20 is the
smallest admissible order for which a classification has not yet been obtained.
Due to the exponential growth in the number of nonisomorphic systems, a
complete classification for order 20 is not a feasible goal with today’s technology.
However, there are some partial classifications for similar structures which might
be feasible for SQS(20), e. g., classification of systems with limited rank [39, 40]
or classification of systems with prescribed group of automorphisms [16].

The exhaustive list obtained in the classification may be quite useful in future
research. In this thesis it was established that non-resolvable SQS(16) exists.
Similar results could be obtained regarding other properties. It might also be
possible to use the SQS(16) as seeds in classification of S(4, 5, 17) or some codes.

Appendix A

Groups and Group Actions

In this work a group theoretical framework is used for isomorphism considera-
tion; a brief introduction to group theory is included here. Special emphasis is
put on group actions. For a more comprehensive introduction to group theory
the reader is referred to any textbook of abstract algebra, e. g., [3]. Since rings
and fields play only a minor role in this work, we skip their definition and again
refer the reader to any textbook on abstract algebra.

Definition 31. A group is a set G with a binary operation · : G × G → G
fulfilling the following axioms:

(x · y) · z = x · (y · z) holds for all x, y, z ∈ G. (A.0.1)

There exists an e ∈ G such that g = e · g for all g ∈ G. (A.0.2)

Every g ∈ G has an inverse g−1 ∈ G such that g−1 · g = e. (A.0.3)

In equations (A.0.2) and (A.0.3) e refers to the same element, called identity.
It is easy to see that the the inverse of any element and the identity are unique.
It follows from the axioms that g = g · e and g · g−1 = e for any g ∈ G.

The number of elements in G is called the order of the group. Note that (A.0.2)
implies that the set G is not empty and hence the order of a group is at least
1. The order may be infinite.

Any binary operation satisfying (A.0.1) is called an associative operation.

Definition 32. If G is a group a with binary operation ·, and H ⊆ G is a
group with the same binary operation, then H is called subgroup of G. H is a
proper subgroup if {e} (H (G.

Definition 33. A group satisfying

x · y = y · x for all x, y ∈ G (A.0.4)

is called commutative or an abelian group.

A.0. Groups and Group Actions 48

For two groups G1 and G2, their Cartesian product G1 × G2 is a group with
operation (g1, g2) · (g′1, g′2) = (g1 · g′1, g2 · g′2).

Sometimes · is omitted from the notations, that is, x · y is denoted by xy.

Definition 34. Let X be a nonempty set. The set of all permutations of X,
i. e., bijections from X onto X, is a group with composition of mappings as the
group operation. The group is called symmetric group on X and denoted SX .
Subgroups of SX are called permutation groups on X.

Sometimes it is required that the set X be finite, but no such requirements are
made here. It is common to denote S{1,2,...,n} by Sn for brevity.

The concept of group actions is very useful in the study of isomorphisms of
combinatorial structures.

Definition 35. The action of a group G on a set X is a binary operation
∗ : G×X → X having the following properties:

If e ∈ G is the identity, then e ∗ s = s for every s ∈ X, (A.0.5)

For all x, y ∈ G, s ∈ X, we have x ∗ (y ∗ s) = (x · y) ∗ s. (A.0.6)

We say that G acts of X and X is a G-set.

If G is a permutation group on X, then the natural action of G on X is defined
as g ∗ s = g(s). The natural action is employed in this study.

Definition 36. The orbit of s ∈ X under the action of G is the set G ∗ s :=
{g ∗ s | g ∈ G}, and the stabilizer of s is NG(s) := {g ∈ G | g ∗ s = s}.

Note that the stabilizer of any element is a subgroup of G.

Theorem 26. Let X be a G-set. Define a relation ∼= on X such that x ∼= y
if x = g ∗ y for some g ∈ G. The relation is an equivalence relation. The
equivalence classes of X are the orbits of the elements of X, which form a
partition of X.

If G acts on X, then the action can be extended to the power set of X: if
T ⊆ X, g ∗T := {g ∗ t | t ∈ T}. Also if G acts on the sets X and Y , the actions
can be extended to X × Y as g ∗ (x, y) := (g ∗ x, g ∗ y). This can be generalized
to the cartesian product of any number of G-sets. These extensions are used
without explicit mentioning.

Properties unaffected by group action are called invariants. Pasch configu-
rations (see Section 2.4) provide useful invariants for Steiner triple systems.
Invariants for graphs are studied in Section 4.3.

The action of G on itself provides some nice examples. Action by translation
is defined as g ∗ x = g · x and action by conjugation as g ∗ x = g · x · g−1.

A.0. Groups and Group Actions 49

Action by translation is transitive, i. e., it has only one orbit, G. Action by
conjugation is transitive if and only if G consists of one element only, since
G ∗ e = {e}. Subgroups that are invariant under conjugation are called normal
subgroups. Normal subgroups are a important concept in group theory, as are
simple groups, i. e., groups that do not have proper normal subgroups. Also
g ∗ x = x · g−1 is an action of G on itself.

Definition 37. Let H be a subgroup of G. Consider the action of H on G
given by h ∗ g = g · h−1. The orbits of the action are called the (left) cosets of
H. The number of cosets is called the index of H and denoted as [G : H].

For two groups K and H which are subgroups of G, the (K, H) double cosets are
the orbits of G under the action of K×H on G defined as (k, h)∗g = k ·g ·h−1.
Note that in general the (K, H) and (H,K) double coset are not equal.

Alternatively one could define cosets as sets of form gH = {g ·h | h ∈ H} where
g ∈ G, but Definition 37 allows us to employ Theorem 26.

For two groups K and H which are subgroups of G, the (K, H) double cosets are
the orbits of G under the action of K×H on G defined as (k, h)∗g = k ·g ·h−1.
Note that in general the (K, H) and (H,K) double coset are not equal.

Note that H is the orbit of any h ∈ H. Furthermore, the action is injective in
the sense that h∗g = h′∗g implies h = h′. Thus all orbits have equal cardinality,
|H|. Combining this with Theorem 26 proves the following theorem.

Theorem 27 (Lagrange). If H is a subgroup of a finite group G, then |G| =
[G : H]|H|. Especially |H| divides |G|.

Lagrange’s theorem has a lot of important applications in group theory. For
example, it is easy to see that no group of prime order has a proper subgroup.

A set T containing exactly one element from each coset of H is called a transver-
sal. Each g ∈ G has a unique representation as a product t · h, t ∈ T, h ∈ H.
Analogously a set T ′ containing one element of every orbit of G-set X is called
an orbit transversal, and each x ∈ X has a (not necessarily unique) representa-
tion x = g ∗ t, g ∈ G, t ∈ T ′. The following theorem gives a somewhat similar,
but unique, representation.

Theorem 28 (Orbit-stabilizer theorem). Let G be a group acting on a set X.
If x ∈ X and T ⊆ G is a transversal of NG(x), then the mapping T 3 t 7→ t ∗ x
is a bijection from T onto G ∗ x. Thus, if G and X are finite, then

|X| =
∑
x∈O

[G : NG(x)] = |G|
∑
x∈O

1
|NG(x)|

(A.0.7)

where O ⊆ X contains exactly one element from each orbit.

Theorem 28 can be used to compute the total number of elements when one
representative from each orbit is known, e. g., as a result of classification. The

A.0. Groups and Group Actions 50

following theorem on the other hand gives a formula for computing the number
of orbits without explicitly determining the orbits or an orbit transversal.

Theorem 29 (Cauchy–Frobenius). Let G be a finite group acting on a finite
set X. Define fixX(g) = |{x ∈ X | g ∗ x = x}|. The number of orbits is

1
|G|

∑
g∈G

fixX(g) (A.0.8)

Theorem 29 is often called Burnside’s lemma.

Appendix B

Computational Complexity

One of the most important properties of an algorithm is the amount of time
and memory required for executing it. These requirements naturally depend on
the input. Unfortunately analyzing the running time or memory consumption
will prove difficult if one seeks the exact solution, and the result will depend on
several implementation-specific details. Accordingly it is customary to consider
the rate of growth of the resource requirements.

Definition 38. Let F be the set of functions f : N → N and g ∈ F . The set
of functions having growth rate at most g is defined as

O(g) = {f ∈ F | there exists N, c, such that f(n) ≤ cg(n) for n ≥ N}.
(B.0.1)

The sets of functions having growth rate at least g and exactly g are defined,
respectively, as

Ω(g) := {f ∈ F | g ∈ O(f)} (B.0.2)

and
Θ(g) := O(g) ∩ Ω(g). (B.0.3)

It is common to use somewhat inaccurate notations such as f = O(g) instead
of f ∈ O(g). The relation ≡ defined by f ≡ g if f ∈ Θ(g) is an equivalence
relation.

In complexity theory it is common to consider decision problems, that is, prob-
lems of deciding whether the input has a prescribed property or not. Although
most of the algorithmic problems of practical importance are not decision prob-
lems, they have natural decision problem variants. For example consider the
task of finding a path from one given vertex to another. A natural decision
problem variant would be to determine whether such a path exists. Typically
this kind of simplification has no significant effect on the complexity of the
problem.

B.0. Computational Complexity 52

A decision problem can be equated with the set of all inputs having the relevant
property. Since in computer science we assume that all data is (or at least can
be) represented in binary, we equate decision problems with sets of binary
strings, called languages. All non-trivial (from a computational complexity
point of view) languages consist of an infinite number of strings.

If an algorithm solves a decision problem, we say that it accepts the correspond-
ing language.

For a binary string x let |x| denote its length. The set of all finite binary
strings is denoted by {0, 1}∗. The size of a problem instance is its length when
expressed as a binary string.

Definition 39. TIME(f(n)) is the set of problems each of which can be solved
with an algorithm that requires at most g(n) = O(f(n)) operations for solving
a problem instance of size n.

Definition 40.

P =
∞⋃

k=1

TIME(nk) (B.0.4)

The set P is a complexity class, that is, a set of computational problems con-
nected by their difficulty. In the case of P, the problems are not very difficult
computationally at least in theoretical sense.

The most simple and widely used, although somewhat controversial, definition
of “efficient” algorithms states that an algorithm is efficient if its execution
always terminates in a polynomial time with respect to the size of the input.
According to this definition P is exactly the set of efficiently solvable problems.
Hence one of the central problems of theoretical computer science is to deter-
mine what kinds of problems P includes, especially whether it includes the set
NP defined below.

Definition 41. A relation Q ⊂ {0, 1}∗ × {0, 1}∗ is polynomially balanced if
constants k, c exists such that (x, y) ∈ Q implies |y| ≤ c|x|k. Q is polynomially
computable if the problem of deciding whether (x, y) ∈ Q belongs to P.

NP is the set of languages L such that x ∈ L if and only if there exists y such
that (x, y) ∈ Q, where the relation Q is polynomially balanced and polynomially
computable.

NP is short for nondeterministic polynomial, since each language L ∈ NP is
accepted by an algorithm that nondeterministically “guesses” the value of y
and verifies (deterministically) that (x, y) ∈ Q, altogether in polynomial time
with respect to |x|.

More precisely, a nondeterministic algorithm accepts a language L if the fol-
lowing holds: x ∈ L if and only if some nondeterministic choices made while
executing the algorithm on input x leads to an affirmative result.

B.0. Computational Complexity 53

The complexity class NP is interesting since most, although not all, computa-
tional problems of practical importance belong to NP. It is easy to see that P ⊆
NP. One of the most important open questions of theoretical computer science
is whether P = NP holds. In other words the question is whether all problems
in NP can be solved efficiently, i. e., in polynomial time, with deterministic al-
gorithms. Since in spite of extensive effort, no polynomial time algorithm has
been found for certain NP problems, it is strongly believed that P 6= NP.

As an example of a NP problem we have the satisfiability problem involving
Boolean expressions. A literal is either a Boolean variable or the negation of
a Boolean variable. A clause is a Boolean expression that is a disjunction of
literals. A Boolean expression is in conjunctive normal form if it consists of a
conjunction of clauses.

Problem 6 (SAT or Satisfiability). Given a Boolean expression in conjunc-
tive normal form, determine whether the expression evaluates to True for some
values of the variables.

To verify that SAT belongs to NP let y be a string describing the values of
the variables and let (x, y) ∈ Q if the expression x evaluates to True when
the values of variables are given by y. It is straightforward to compute Q in
polynomial time. Also |y| ≤ c|x| for some c since a string of n character may
contain at most n Boolean variables.

The following special case of SAT is very useful in the study of NP.

Problem 7 (3SAT). Given a Boolean expression in conjunctive normal form
such that each clause consists of exactly three literals, determine whether the
expression is satisfiable or not.

Definition 42. A reduction from a language L to a language L′ is a mapping
R : {0, 1}∗ → {0, 1}∗ such that x ∈ L if and only if R(x) ∈ L′. Furthermore it
is required that computing R(x) requires at most O(log |x|) bits of memory.

If R is a reduction from L to L′ and R′ a reduction from L′ to L′′, then R and
R′ can be combined to obtain a reduction from L to L′′. Proving this is not as
easy as it might seem since the definition of reduction limits the memory, not
time, of the computation, see [32, Propositien 8.2].

Since computing R(x) requires at most c log |x| bits of memory, there are at most
2c log |x| = 2c|x|c states in which the algorithm may be during the computation.
Hence the computation terminates in polynomial time.

If a reduction from L to L′ exists and L′ is accepted by some efficient algorithm,
L is accepted by an efficient algorithm obtained by combining R and the algo-
rithm for L′. Also if L is not accepted by any efficient algorithm, neither is L′.
The former implication is useful in algorithm design and the latter in studying
computational complexity.

B.0. Computational Complexity 54

Definition 43. A language L is NP-complete if L ∈ NP, and in addition for
any L′ ∈ NP there exists a reduction from L′ to L.

Completeness for other complexity classes is defined analogously. For some
classes it is an open question whether any complete problems exist. However
for NP there exists a great number of known complete problems.

The NP-complete problems are in computational complexity sense the most
difficult of all NP problems. None of them can be solved in polynomial time
unless P=NP and vice versa. Recall that it is believed that P6=NP. So far
the best known algorithms for NP-complete problems require in worst cases
exponential time to complete. Thus proving that a problem is NP-complete
shows that it is difficult to solve in practical and probably also in theoretical
sense.

Theorem 30 (Cook’s theorem). SAT is NP-complete.

Proof. See [32, Theorem 8.2].

Once the NP-completeness of a language L has been established, it may be
used in proving NP-completeness of other languages as follows: if L can be
reduced to L′, any NP-language can be reduced to L′ by combining reduction.
To finish the NP-completeness proof for L′ one needs to prove L′ ∈ NP which
is often trivial, but on some occasions difficult. This proof technique starting
with Cook’s theorem is used in virtually all NP-completeness proofs, Cook’s
theorem itself naturally excluded.

Another sign of the importance of Cook’s theorem and the satisfiability problem
is the fact that analogous results hold for many other complexity classes.

Still one more complexity class, #P, is required. This time the problems cannot
be formulated as decision problems.

Definition 44. The complexity class #P consists of problems of following type:
given x, compute the number of y such that (x, y) ∈ Q, where the relation Q is
polynomially balanced and polynomially computable.

Clearly each problem in NP corresponds to a problem in #P which is at least
as difficult as the original one. It is believed that problems in #P are in general
more difficult than problems inNP. As soon will be seen, some NP-complete
decision problems correspond to #P-complete counting problems. Quite sur-
prisingly there are problems that are in P and whose counting variants are still
#P-complete [32, Theorem 18.3].

As an example of a problem in #P we have #SAT, the problem of determining
how many values of the variables satisfy a Boolean expression.

Since problems in #P are not decision problems, the definition of reduction
needs slight modifications for the concept of #P -completeness to make sense.

B.0. Computational Complexity 55

Definition 45. A reduction from a problem P to a problem P ′ is a pair of
mappings (R, S) such that for problem instance x of P , R(x) is a problem
instance of P ′. In addition if N is the solution of R(x), S(N) is the solution of
x. Furthermore both P and S can be computed in logarithmic space.

In the #P reductions encountered in this thesis S is the identity function N 7→
N . In this case the reduction is called parsimonious.

Theorem 31. #SAT is #P-complete.

Proof. See [32, Theorem 18.1].

Theorem 32. 3SAT is NP-complete and #3SAT #P-complete.

Proof. Both claims are proved by a parsimonious reduction of SAT to 3SAT.

Each clause consisting of less than 3 literals can be made into equivalent 3-clause
by repeating some literal. This transformation can be applied by 2-clauses
produced by following replacements.

Replace each clause (x1∨. . .∨xn), n > 3, with the clauses (x1∨y1), (¬y1∨x2∨y2),
. . . , (¬yn−1 ∨ xn) where y1, . . . , yn−1 are new variables.

It is not hard to see that if some of the xi is true, there are values of yi such
that the new clauses are satisfied, and conversely. However, if several of the xi

are true, then there are more satisfying truth assignments for the new version
than for the original one.

To make the reduction parsimonious, add the clauses (¬xi ∨ ¬yj) = (xi =⇒
¬yj) for all 1 ≤ i ≤ j ≤ n − 1. Now if k is the smallest integer such that
xk = True, then the new clauses are satisfied if and only if yi = True for
i < k and yi = False for i ≥ k. Thus the reduction conserves satisfiability and
is parsimonious.

It is not hard to see that the space requirement of performing the reduction is
logarithmic in the number of variables.

Bibliography

[1] L. Babai and E. M. Luks, Canonical labeling of graphs, in Proceedings of
the 15th Annual ACM Symposium on Theory of Computing, 1983, pp.
171–183.

[2] J. A. Barrau, On the combinatory problem of Steiner, Proceedings of the
Section of Sciences, Koninklijke Akademie van Wetenschappen te Ams-
terdam 11 (1908), pp. 352–360.

[3] P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul, Basic Abstract Algebra,
2nd ed., Cambridge University Press, Cambridge, 1994.

[4] R. B. Boppana, J. H̊astad and S. Zachos, Does co-NP have short interac-
tive proofs? Inform. Process. Lett. 25 (1987), pp. 127–132.

[5] C. J. Colbourn, Embedding partial Steiner triple systems is NP-complete,
J. Combin. Theory Ser. A 35 (1983), pp. 100–105.

[6] C. J. Colbourn and A. Rosa, Triple Systems, Clarendon Press, Oxford,
1999.

[7] I. Diener, E. Schmitt and H. L. de Vries, All 80 Steiner triple systems on
15 elements are derived, Discrete Math. 55 (1985), pp. 13–19.

[8] J. Doyen, M. Vandensavel, Non isomorphic Steiner quadruple systems,
Bull. Soc. Math. Belg. 23 (1971), pp. 393–410.

[9] G. Lo Faro, L. Milazzo, A. Tripodi, On the upper and lower chromatic
numbers of BSQSs(16), Electron. J. Combin. 8 (2001), Research paper
6, 8 pp.

[10] P. B. Gibbons, R. Mathon, On a new class of Steiner quadruple systems
on 16 symbols, Congr. Numer. 13 (1975), pp. 227–232.

[11] P. B. Gibbons, R. Mathon, D. G. Corneil, Steiner quadruple systems on
16 symbols, Congr. Numer. 14 (1975), pp. 345–365.

[12] H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), pp. 145–
157.

BIBLIOGRAPHY 57

[13] A. Hartman and K. T. Phelps, Steiner quadruple systems, in Contempo-
rary design theory, J. H. Dinitz and D. R. Stinson, editors, Wiley, New
York, 1992, pp. 205–240.

[14] P. Kaski and P. R. J. Österg̊ard, The Steiner triple systems of order 19,
Math. Comp. 73 (2004), pp. 2075–2092.

[15] P. Kaski, personal communication.

[16] P. Kaski, Isomorph-free exhaustive generation of designs with prescribed
groups of automorphisms, SIAM Journal on Discrete Mathematics, to
appear.

[17] P. Kaski, Algorithms for Classification of Combinatorial Objects, Doctoral
Dissertation, Research report HUT-TCS-A94, Laboratory for Theoretical
Computer Science, Helsinki University of Technology, 2005.

[18] T. P. Kirkman, On a problem in combinatorics, Cambridge Dublin Math.
J. 2 (1847), pp. 191-204.

[19] D. E. Knuth, Dancing links, in Millennial Perspectives in Computer Sci-
ence, J. Davies, B. Roscoe, and J. Woodcock, editors, Palgrave, Hound-
mills, 2000, pp. 187–214.

[20] H. Lenz, On the number of Steiner quadruple systems, Mitt. Math. Sem.
Giessen 169 (1985), pp. 55–71.

[21] C. C. Lindner, A. Rosa, There are at least 31,021 nonisomorphic Steiner
quadruple systems of order 16, Utilitas Math. 10 (1976), pp. 61–64.

[22] C. C. Lindner, A. Rosa, Steiner Quadruple Systems—A survey, Discrete
Math. 22 (1978), pp. 147–181.

[23] A. C. H. Ling, C. J. Colbourn, M. J. Grannell, and T. S. Griggs, Con-
struction techniques for anti-Pasch Steiner triple systems, J. London
Math. Soc. (2) 61 (2000), pp. 641–657.

[24] R. Mathon, A note on the graph isomorphism counting problem, Inform.
Process. Lett., 8 (1979), pp. 131–132.

[25] R. A. Mathon, K. T. Phelps, and A. Rosa, Small Steiner triple systems
and their properties, Ars. Combin. 15 (1983), pp. 3–110; and 16 (1983),
p. 286.

[26] R. Mathon and A. Rosa, 2-(v, k, λ) designs of small order, in The CRC
Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz,
editors, CRC, Boca Raton, 1996, pp. 3–41.

[27] B. D. McKay, Practical graph isomorphism, Congr. Numer. 30 (1981),
pp. 45–87.

BIBLIOGRAPHY 58

[28] B. D. McKay, nauty user’s guide (version 1.5), Technical Report TR-CS-
90-02, Computer Science Department, Australian National University,
Canberra, 1990.

[29] B. D. McKay, autoson—a distributed batch system for UNIX workstation
networks (version 1.3), Technical report TR-CS-96-03, Computer Science
Department, Australian National University, Canberra, 1996.

[30] B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms, 26
(1998), pp. 306–324.

[31] N. S. Mendelsohn, S. H. Y. Hung, On the Steiner systems S(3, 4, 14) and
S(4, 5, 15), Utilitas Math. 1 (1972), pp. 5–92.

[32] C. H. Papadimitriou, Computational complexity, Addison-Wesley, Read-
ing, Mass., 1994.

[33] D. A. Spielman, Faster isomorphism testing of strongly regular graphs,
Proc. 28th Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, 1996, pp. 576–584.

[34] D. R. Stinson, A comparison of two invariants for Steiner triple systems:
fragments and trains, Ars. Combin. 16 (1983), pp. 69–67.

[35] H. L. de Vries, Some Steiner quadruple systems S(3, 4, 16) such that all
16 derived triple systems S(2, 3, 15) are isomorphic, Ars Combin. 24A
(1987), pp. 107–129.

[36] H. S. White, F. N. Cole, and L. D. Cummings, Complete classification
of triad systems of fifteen elements, Memoirs Nat. Acad. Sci. U.S.A 14
(1919), pp. 1–89.

[37] V. A. Zinoviev and D. V. Zinoviev, Binary extended perfect codes of
length 16 obtained by a generalized concatenated construction (in Rus-
sian), Problemy Peredachi Informatsii 38 (2002), pp. 56–84, translation
in Probl. Inf. Transm. 38 (2002), pp. 296–322.

[38] V. A. Zinoviev and D. V. Zinoviev, Binary perfect codes of length 15
obtained by a generalized concatenated construction (in Russian), Prob-
lemy Peredachi Informatsii 40 (2004), pp. 27–39, translation in Probl.
Inf. Transm. 40 (2004), pp. 25–36.

[39] V. A. Zinoviev and D. V. Zinoviev, Classification of Steiner’s quadru-
ple systems of order 16 and of rank at most 13 (in Russian), Problemy
Peredachi Informatsii 40 (2004), pp. 48–67, translation in Probl. Inf.
Transm. 40 (2004), pp. 337–355.

[40] V. A. Zinoviev and D. V. Zinoviev, Binary extended perfect codes of length
16 and rank 14, preprint.

[41] V. A. Zinoviev and D. V. Zinoviev, Classification of Steiner quadruple
systems of order 16 and rank 14, preprint.

BIBLIOGRAPHY 59

[42] V. A. Zinoviev and D. V. Zinoviev, Vasiliev codes of length n = 2m and
Steiner systems S(n, 4, 3) of rank n−m over F2, preprint.

[43] V. A. Zinoviev, personal communication.

	Introduction
	Combinatorial Designs
	Incidence Structures
	Steiner Systems
	Projective Spaces
	Pasch Configurations
	Codes

	Isomorph-Free Construction
	The Zinoviev Classification Method
	Canonical Labelling of Incidence Structures
	Generation by Canonical Augmentation
	Efficiency Considerations
	Classification of Steiner Triple Systems
	Classification of Steiner Quadruple Systems

	Auxiliary Algorithms
	Exact Cover Search
	The Isomorphism Problem
	Partitioned Graphs
	nauty
	Point-Block Graph
	Pair Graph
	Block Graph

	Results
	Miscellaneous results
	Resolvability
	Reliability of the Results

	Conclusions
	Groups and Group Actions
	Computational Complexity

