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Abstract

The Steiner quadruple systems of order 16 are classified up to isomorphism by
means of an exhaustive computer search. The number of isomorphism classes of
such designs is 1,054,163. Properties of the designs—including the orders of the
automorphism groups and the structures of the derived Steiner triple systems of
order 15—are tabulated. A double-counting consistency check is carried out to gain
confidence in the correctness of the classification.
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1 Introduction

A standard problem in design theory is that of classifying designs with specific
parameter values up to isomorphism—an example of such a classification is
the one obtained by Van Lint, Van Tilborg, and Wiekema in [13].

For positive integers 2 ≤ t ≤ k ≤ v, a Steiner system S(t, k, v) is a v-set V
of points together with a set of k-subsets of V , called blocks, with the property
that every t-subset of points is contained in exactly one block. Steiner systems
S(2, 3, v) and S(3, 4, v) are called Steiner triple systems and Steiner quadruple
systems, respectively. The parameter v is called the order of a system. For the
current knowledge as regards classification up to isomorphism of Steiner triple
systems, see [8]. Writing N(t, k, v) for the number of isomorphism classes of
Steiner systems S(t, k, v), for Steiner quadruple systems it is now known that

N(3, 4, 8) = 1,

N(3, 4, 10) = 1,

N(3, 4, 14) = 4,

N(3, 4, 16) = 1,054,163,

obtained in [1], [1], [19], and the current work, respectively. See also [2,21]. It
is well known [3] that N(3, 4, v) > 0 exactly when v ≡ 2 or 4 (mod 6).

Asymptotically it is known [4,10] that

cv3 ≤ log N(3, 4, v) ≤ (v3 log v)/24

for some constant c > 0 and sufficiently large admissible v.
In the present paper the constructive enumeration that was carried out

to determine N(3, 4, 16) = 1,054,163 is documented. This brings to an end
work on improving lower bounds on N(3, 4, 16) carried out by Doyen and
Vandensavel [4]; Gibbons and Mathon [5]; Gibbons, Mathon, and Corneil [6];
Lindner and Rosa [11,12]; and Zinoviev and Zinoviev [22] over a span of more
than three decades.

A Steiner system, as defined here, is a certain set system. Formally, a set
system is a pair X = (V,B), where V is a finite set of points and B is a set of
subsets (called blocks) of V .

An isomorphism of a set system X = (V,B) onto a set system X ′ = (V ′,B′)
is a bijection f : V → V ′ satisfying B′ = {f(B) : B ∈ B}. If such a bijection
exists then we say that X and X ′ are isomorphic. An automorphism of X
is an isomorphism of X onto itself. The set of all automorphisms of X with
composition of permutations as the group operation forms the automorphism
group of X , denoted by Aut(X ).

Let Q = (V,B) be a Steiner system S(t, k, v), and let x ∈ V . The derived
system of Q with respect to x is the set system Qx = (Vx,Bx) defined by
Vx = V \ {x} and Bx = {B \ {x} : x ∈ B ∈ B}. When t ≥ 3, it is immediate
that Qx is a Steiner system S(t− 1, k − 1, v − 1).
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The paper is outlined as follows. The classification approach, divided into
the parts of constructing designs and isomorph rejection, is considered in Sec-
tion 2. A consistency check that was performed to gain confidence in the
correctness of the classification is also discussed. The paper is concluded in
Section 3 by studying and tabulating various properties of the classified de-
signs, including the orders of the automorphism groups and the structures of
the derived Steiner triple systems of order 15.

2 Classification

Because a Steiner quadruple system S(3, 4, v) defines v derived Steiner triple
systems S(2, 3, v−1), a direct classification approach is to proceed by extend-
ing triple systems with a new point and new blocks to obtain all quadruple
systems. Mendelsohn and Hung [19] used this basic approach to classify the
Steiner quadruple systems S(3, 4, 14), and this is the approach we employ here
to classify the Steiner quadruple systems S(3, 4, 16). In terms of the algorithms
employed, the present approach is closely related to the approach used in [8]
to classify the Steiner triple systems S(2, 3, 19).

Let us now describe the approach in more detail. We start with one repre-
sentative system from each of the 80 isomorphism classes of the Steiner triple
systems S(2, 3, 15); such representatives can be found, for example, in [15].
For brevity in what follows, we use the terms ”triple system” and “quadruple
system” exclusively to refer to a Steiner triple system S(2, 3, 15) and a Steiner
quadruple system S(3, 4, 16), respectively.

Extending triple systems. For each representative triple system T , we
introduce a new point p to the point set, insert p into all the blocks, and
extend the resulting set system T̂ into a quadruple system in all possible ways
by adding blocks.

We implement the extension step by formulating the extension problem as
an instance of the exact cover problem. In the exact cover problem one is given
a set C of subsets of a finite set U , and the task is to produce all partitions of
U consisting of sets in C.

To extend T̂ into a quadruple system in all possible ways, we observe that

E =
{
{x, y, z, w} ⊂ V̂ : |B ∩ {x, y, z, w}| ≤ 2 for all B ∈ B̂

}
consists of all canidate quadruples that can extend T̂ , and let

U =
{
{x, y, z} ⊂ V̂ : {x, y, z} 6⊂ B for all B ∈ B̂

}
,

C = {{{x, y, z}, {x, y, w}, {x, w, z}, {y, w, z}} : {x, y, z, w} ∈ E} .

To solve the instances of exact cover, we employ a backtrack algorithm of
Knuth [9]. No isomorph rejection is carried out during the extension phase.

The extension from triple systems to quadruple systems required approxi-
mately 12 years of CPU time when distributed using the batch system autoson
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[17] to a network of computers. A total of 107 computers, almost all with
2.2-GHz or 2.4-GHz Intel CPUs, were at some point running the search.

Isomorph rejection. The search yields a list of 325,895,777 quadruple sys-
tems extending the representative triple systems. To reject all but one quadru-
ple system from every isomorphism class in this list, we employ two tests that
are based on the general theory developed by McKay [18] and analogous to the
tests in [8]. The first test ensures that any two isomorphic quadruple systems
accepted in the test must be generated by extending the same representa-
tive triple system T , and furthermore, must be related by an isomorphism in
Aut(T̂ ). The second test eliminates any remaining systems that are isomorphic
under Aut(T̂ ).

The first test is defined by means of a rule M that associates with ev-
ery quadruple system Q a nonempty Aut(Q)-orbit M(Q) of points such that
whenever Q′ is a quadruple system isomorphic to Q, every isomorphism of Q
onto Q′ maps M(Q) onto M(Q′). The first test accepts a quadruple system
Q if p ∈ M(Q), where p is the point of Q satisfying Qp = T .

In the second test, we assume that the set of quadruple systems extending
T̂ is ordered lexicographically and that Aut(T̂ ) acts on this set by permuting
the points in the blocks. The second test accepts Q if it is the lexicographic
minimum of its Aut(T̂ )-orbit.

Implementation of isomorph rejection. Efficient implementation of
the two outlined tests is somewhat nontrivial, so we will discuss this issue
here. For a given quadruple system Q = (V,B), each derived triple system
Qx belongs to one of the 80 isomorphism classes of triple systems. These
isomorphism classes can be distinguished from each other by the multiset
that, for each point y, consists of the number of occurrences of y in Pasch
configurations; a Pasch configuration is a set of four triples isomorphic to
{{a, c, e}, {a, d, f}, {b, c, f}, {b, d, e}}. We number the 80 isomorphism classes
of triple systems so that the order of the automorphism group is a nondecreas-
ing function of the numbering.

The first test is implemented as follows. Given a quadruple system Q =
(V,B), we compute the index of every derived triple system Qx using the
Pasch configuration invariant. If the derived triple system Qp does not have
the minimum index over all derived triple systems, then we reject Q from fur-
ther consideration. Otherwise we represent Q as the bipartite incidence graph
with V ∪ B as the vertex set and {{x, B} : x ∈ B ∈ B} as the edge set. We
then compute a canonical labeling and automorphism orbits for the incidence
graph of Q using nauty [16], and, in the canonically labeled incidence graph,
let M(Q) be the first automorphism orbit of points with the property that the
derived triple systems associated with the points of the orbit have the mini-
mum number over all derived triple systems. We then accept Q if p ∈ M(Q).
In invoking nauty, we use the numbers of the derived triple systems to define
an initial ordered partition for expediting the evaluation of the canonical la-
beling. More precisely, points with identically numbered derived triple systems
are placed into the same cell of the partition, and the cells are ordered by the
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numbers of the derived triple systems.
The second test is implemented as an exhaustive search over a precom-

puted table of elements of Aut(T̂ ). If lexicographically Qa < Q for some
a ∈ Aut(T̂ ), then we reject Q. Otherwise we accept Q as the representative
of its isomorphism class.

When implemented in this manner, isomorph rejection for the generated
quadruple systems requires less than a day of CPU time.

A consistency check. To gain confidence in the correctness of the clas-
sification, we perform a consistency check based on double counting. On one
hand, we rely on data obtained in the search for the extensions of the triple
systems; on the other hand, we rely on the classified quadruple systems—cf. [8].

From the search data we obtain for each representative triple system T the
total number E(T ) of quadruple systems that extend T̂ . Note that Aut(T )
is isomorphic to Aut(T̂ ). By the orbit-stabilizer theorem we obtain that the
total number of quadruple systems over a fixed set of 16 points is

1

16

∑
T

16! · E(T )

|Aut(T )|
=

∑
T

15! · E(T )

|Aut(T )|
,

where the division by 16 is required because the sum counts each quadruple
system once for each point.

Looking at the classified quadruple systems and their automorphism groups,
from the orbit-stabilizer theorem we obtain an alternative count

∑
Q

16!

|Aut(Q)|
,

where the sum is over the classified quadruple systems.
Both counts give the result 14,311,959,985,625,702,400, which gives us con-

fidence that the classification is correct.

3 Results

In this section we collect some further results that have been computed from
the classified designs; however, let us first state the main result.

Theorem 1 The number of isomorphism classes of Steiner quadruple systems
S(3, 4, 16) is 1,054,163.

Two properties that are obtained directly with the outlined method of
classification are the automorphism group and the structures of the derived
triple systems. Table 1 gives the number of isomorphism classes of quadruple
systems for each possible order of the automorphism group.

INSERT TABLE 1 ABOUT HERE
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For a given quadruple system Q, denote by β(Q) the number of isomor-
phism classes of derived triple systems of Q. Table 2 partitions the isomor-
phism classes of quadruple systems based on the value of β.

INSERT TABLE 2 ABOUT HERE

If β(Q) = 1, then Q is called homogeneous, and if β(Q) = v, then Q is
called heterogeneous. De Vries [20] has established that 69 of the 80 isomor-
phism classes of triple systems admit extension to a homogeneous quadruple
system. Based on the classification we obtain that none of the remaining 11
isomorphism classes admits extension to a homogeneous quadruple system.
Hartman and Phelps [7] conjecture that asymptotically “almost all” Steiner
quadruple systems S(3, 4, v) are heterogeneous.

Table 3 shows for each of the 80 isomorphism classes of derived triple sys-
tems the number of isomorphism classes of quadruple systems that extend
triple systems in the class. The numbering of the derived triple systems is
that used by Mathon, Phelps, and Rosa [15].

INSERT TABLE 3 ABOUT HERE

The rank of a quadruple system is the rank of a corresponding incidence
matrix. Table 4 displays the number of isomorphism classes of quadruple sys-
tems for each possible rank. The results for rank at most 13 agree with those
obtained by Zinoviev and Zinoviev [22].

INSERT TABLE 4 ABOUT HERE

Two further properties that we have investigated are colorability and re-
solvability.

A weak k-coloring of a design is a coloring of the points with the property
that any block has at least two points colored with different colors and all k
colors are used to color at least one point each. It is known that there exist
Steiner quadruple systems S(3, 4, 16) that are weakly 2-colorable and those
that are not weakly 2-colorable [4]. Moreover, every Steiner quadruple system
S(3, 4, 16) is weakly 3-colorable [14]. Investigation of the classified designs
shows that there are 349,058 weakly 2-colorable Steiner quadruple systems
S(3, 4, 16).

A design is resolvable if its blocks can be partitioned into parallel classes,
which in turn partition the point set. Whereas for many types of designs
the problem whether resolvable designs with given parameters exist or not
is the focus of interest, for Steiner quadruple systems S(3, 4, 16) the open
problem has been whether designs that are not resolvable exist [22]. It turns
out, however, that several hundred thousand of the Steiner quadruple systems
S(3, 4, 16) indeed are not resolvable.

Many properties remain to be studied. One of the most interesting—and,
conceivably, computationally challenging—problems is that of determining
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whether the Steiner quadruple systems S(3, 4, 16) can be extended to Steiner
systems S(4, 5, 17). In fact, the existence of Steiner systems S(t, t + 1, t + 13)
is an open problem for 4 ≤ t ≤ 11 [3].
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Table 1
Orders of automorphism groups

|Aut(Q)| # |Aut(Q)| # |Aut(Q)| #

1 459,466 32 2,732 336 5
2 344,972 36 1 384 24
3 1,721 42 7 512 8
4 174,544 48 159 576 1
5 2 60 1 768 9
6 861 64 585 1,152 2
8 53,197 80 1 1,344 1
9 4 96 84 1,536 5

12 759 128 178 2,688 1
16 14,522 168 4 3,072 2
21 12 192 41 21,504 1
24 216 256 34 322,560 1
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Table 2
Values of β

β # β #

1 1,641 9 128,416
2 12,338 10 101,257
3 34,934 11 72,842
4 72,907 12 42,672
5 106,084 13 18,807
6 143,248 14 5,667
7 161,399 15 1,115
8 150,717 16 119
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Table 3
Occurrences of derived triple systems

No # No # No # No #

1 13,711 21 47,125 41 5,780 61 14,179
2 240,118 22 49,243 42 105 62 2,606
3 213,133 23 157,868 43 275 63 5,503
4 759,223 24 134,657 44 671 64 3,478
5 410,563 25 166,233 45 1,068 65 183
6 257,899 26 196,444 46 363 66 187
7 43,092 27 75,791 47 4,738 67 108
8 699,707 28 73,897 48 542 68 161
9 725,288 29 63,255 49 344 69 241

10 742,266 30 22,692 50 343 70 4,800
11 294,132 31 57,948 51 597 71 168
12 324,812 32 37,117 52 1,020 72 131
13 389,642 33 26,625 53 6,059 73 40
14 301,162 34 29,240 54 5,130 74 310
15 431,065 35 2,959 55 1,163 75 452
16 77,610 36 1,817 56 482 76 3,307
17 143,673 37 35 57 360 77 34
18 427,530 38 742 58 5,786 78 52
19 57,425 39 6,252 59 5,513 79 5
20 186,917 40 6,562 60 523 80 5

11



Table 4
Ranks

Rank #

11 1
12 15
13 4,131
14 708,103
15 341,913
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